• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

E. coli: The ideal transport for next-gen vaccines?

Bioengineer by Bioengineer
February 12, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: University at Buffalo

BUFFALO, N.Y. – Most people recoil at the thought of ingesting E. coli. But what if the headline-grabbing bacteria could be used to fight disease?

Researchers experimenting with harmless strains of E. coli – yes, the majority of E. coli are safe and important to healthy human digestion – are working toward that goal. Specifically, they have developed an E. coli-based transport capsule designed to help next-generation vaccines do a more efficient and effective job than today's immunizations.

The research, described in a study (insert study link) published today (July 1) in the journal Science Advances, highlights the capsule's success fighting pneumococcal disease, an infection that can result in pneumonia, sepsis, ear infections and meningitis.

"It's a bit counterintuitive given what you here about E. coli, but there are many strains of the bacteria, most of which are perfectly normal in the body that have great potential to fight disease," said Blaine A. Pfeifer, PhD, associate professor of chemical and biological engineering in the University at Buffalo School of Engineering and Applied Sciences.

Pfeifer is the study's co-lead author along with his former student Charles H. Jones, PhD, who is leading efforts to commercialize the biotechnology as CEO and founder of Buffalo, New York-based startup Abcombi Biosciences.

The core of the capsule is harmless E. coli. Around the bacteria, the researchers wrapped a synthetic polymer – called poly (beta amino ester) – like a chain link fence. The positive-charged polymer, combined with the negative-charged bacteria cell wall, create a sort of hybrid capsule.

To test the capsule, the researchers then inserted a protein-based vaccine, also being commercialized by Abcombi, designed to fight pneumococcal disease. The results, when tested in mice, were impressive.

The capsule's hybrid design provided:

  • Both passive and active targeting of specific immune cells called antigen-presenting cells that trigger an immune response.
  • Natural and multicomponent adjuvant properties, which enhance the body's immune response.
  • Dual intracellular delivery mechanisms to direct a particular immune response.
  • Simultaneous production and delivery of the components (antigens) required for a vaccine.
  • Strong vaccination protection capabilities against pneumococcal disease.

It's also relatively inexpensive to create and flexible in terms of use. For example, the capsule could be used as a delivery device for therapies that target cancer, viral-based infectious disease and other illnesses.

###

Additional UB authors of the study include: Yi Li, Marie Beitelshees, Lei Fang, Mahmoud Kamal Ahmadi and Mingfu Chen, all of the Department of Chemical and Biological Engineering; Bruce Davidson and Paul Knight III, each of the Department of Anesthesiology and the Department of Microbiology and Immunology; Randall J. Smith Jr. of the Department of Biomedical Engineering; Stelios T. Andreadis of the Department of Chemical and Biological Engineering, the Department of Biological Engineering and UB's New York State Center of Excellence in Bioinformatics and Life Sciences.

Other additional authors include Andrew Hill of Abcombi Biosciences, and Anders Hakansson, formerly of UB but now with Lund University in Sweden.

The research was supported by grants from the National Institutes of Health and the Arthur A. Schomburg Fellowship Program at UB.

Media Contact

Cory Nealon
[email protected]
716-645-4614
@UBNewsSource

http://www.buffalo.edu

Share12Tweet7Share2ShareShareShare1

Related Posts

Ants vs. Bumblebees: A Battle with No Victors

Ants vs. Bumblebees: A Battle with No Victors

November 13, 2025
Mapping Guanidinoacetic Acid’s Tissue-Specific Effects in Cattle

Mapping Guanidinoacetic Acid’s Tissue-Specific Effects in Cattle

November 13, 2025

Phase 3 Study Confirms Strong Safety and Immunogenicity of EuTYPH-C Inj.® Multi-Dose

November 13, 2025

Iain Couzin Named a “Highly Cited Researcher” for 2025

November 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    317 shares
    Share 127 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    209 shares
    Share 84 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    141 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1306 shares
    Share 522 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Study Reveals Cellular Protein FGD3 Enhances Effectiveness of Breast Cancer Chemotherapy and Immunotherapy

Groundbreaking High-Precision Measurement of Potential Dynamics Achieved in Reactor-Grade Fusion Plasma

Revolutionary Nanoplatforms Combine Ferroptosis and Immunotherapy: Innovative Engineering Tactics for Tumor Microenvironment Transformation and Enhanced Treatment Efficacy

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.