• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Dynamic full-field optical coherence tomography: 3D live-imaging of retinal organoids

Bioengineer by Bioengineer
August 18, 2020
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: by Jules Scholler, Kassandra Groux, Olivier Goureau, José-Alain Sahel, Mathias Fink, Sacha Reichman, Claude Boccara and Kate Grieve

Current modalities for imaging living tissues and 3D cell cultures are invasive, slow or lacking in spatial resolution. Dynamic full-field optical coherence tomography (D-FFOCT) is a label-free, non-invasive, quantitative technique allying high spatial and temporal resolutions. This technique relies on low coherence interferometry to amplify the phase and amplitude fluctuations, created by moving scattering structures inside biological samples, yielding a motility contrast. D-FFOCT opens up the possibility of following the development of complex 3D multicellular structures, such as retinal organoids.

In a new paper by Jules Scholler, Kassandra Groux, et al., published in Light: Science & Applications, a team of optics experts (Institut Langevin, Paris, France) led by Dr Kate Grieve from the Quinze-Vingts National Eye Hospital (Paris, France), in collaboration with cell biologists (Institut de la Vision, Paris, France), have developed and applied a new imaging modality for the imaging of in-development retinal organoids.

These scientists summarize the operational principle of their microscope:

“We use the interferometric amplification of a full field optical coherence tomography device and study the fluctuation of the interferometric signal to quantitatively construct tomographic volumes with a metabolic contrast. Owing to our high sensitivity, we are able to reconstruct highly contrasted images of almost transparent samples without using any exogenous labels.”

“Owing to the full field configuration and the high sensitivity, our method is faster and requires much lower illumination intensity than nonlinear microscopy techniques that can damage the sample irreversibly. This allows us to study the development of the same sample over periods of several weeks” they added.

“D-FFOCT will have many potential applications for in vitro living tissue including disease modeling, cancer screening, and drug screening” the scientists forecast.

###

Media Contact
Jules Scholler
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41377-020-00375-8

Tags: Chemistry/Physics/Materials SciencesOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

August 23, 2025
blank

New Molecular-Merged Hypergraph Neural Network Enhances Explainable Predictions of Solvation Gibbs Free Energy

August 22, 2025

Shaping the Future of Dysphagia Diets Through 3D Printing Innovations

August 22, 2025

Four Breakthrough Applications Propel TENG Technology into the Spotlight

August 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

Harnessing the Power of the Non-Coding Genome to Advance Precision Medicine

Moffitt Study Reveals Lymphoma Speeds Up Aging in Immune Cells and Tissues

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.