• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, November 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Dynamic DNA helps ward off gene damage, study reveals

Bioengineer by Bioengineer
June 15, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers have identified properties in DNA's protective structure that could transform the way scientists think about the human genome.

Molecules involved in DNA's supportive scaffolding — once thought to be fixed — go through dynamic and responsive changes to shield against mutations, the research shows.

Experts say this finding is crucial to understanding DNA damage and genome organisation and could impact current thinking on DNA-linked diseases, including cancers.

In human cells, DNA is wrapped around proteins to form chromatin. Chromatin shields DNA from damage and regulates what genetic information can be read — a process known as transcription.

Researchers — led by the University of Edinburgh — showed that a chemical called scaffold attachment factor A (SAF-A) binds to specific molecules known as caRNAs to form a protective chromatin mesh.

For the first time, this mesh was shown to be dynamic, assembling and disassembling and allowing the structure to be flexible and responsive to cell signals.

In addition, loss of SAF-A was found to lead to abnormal folding of DNA and to promote damage to the genome.

SAF-A has previously been shown in mouse studies to be essential to embryo development and mutations of the SAF-A gene have repeatedly been found in cancer gene screening studies.

Scientists say the findings shed light on how chromatin protects DNA from high numbers of harmful mutations, a condition known as genetic instability.

The study — published in Cell — was carried out in collaboration with Heriot Watt University. It was funded by the Medical Research Council (MRC).

Nick Gilbert, Professor of Genetics at the University of Edinburgh's MRC Institute of Genetics and Molecular Medicine, said: "These findings are very exciting and have fundamental implications for how we understand our own DNA, showing that chromatin is the true guardian of the genome. The results open new possibilities for investigating how we might protect against DNA mutations that we see in diseases like cancer."

Cutting-edge techniques used in the study were developed by the Edinburgh Super-Resolution Imaging Consortium, which is supported by the MRC, the Biotechnology and Biological Sciences Research Council and the Engineering and Physical Sciences Research Council.

Professor Rory Duncan, Head of the Institute for Biological Chemistry, Biophysics and Bioengineering at Heriot-Watt University said: "The molecules involved in this study are as small to humans as Jupiter is large. The bespoke microscope techniques that we developed to understand these very tiny structures are important not only for this project but for all of biology."

###

Media Contact

Kate McAllister
[email protected]
0044-131-650-6357
@edinunimedia

http://www.ed.ac.uk

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Triploidy Effects on Sea Bass Development Revealed

Triploidy Effects on Sea Bass Development Revealed

November 7, 2025
blank

Sexual Dimorphism in Serum Metabolites Post-Exercise

November 7, 2025

New Study Reveals How Variations Between Preclinical Models and Humans Can Predict Drug Toxicity

November 7, 2025

Recombination and Transposons Influence Chironomus riparius Diversity

November 7, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1301 shares
    Share 520 Tweet 325
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Triploidy Effects on Sea Bass Development Revealed

Myocarditis in Child After Scorpion Sting: Case Study

HIIT Boosts Mental Health and Sleep in College Women

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.