• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Durable platform makes sustainable fuel from seawater

Bioengineer by Bioengineer
September 21, 2022
in Chemistry
Reading Time: 4 mins read
0
Durable electrode material improves seawater electrolysis
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Seawater could be the perfect stockfeed for sustainable fuel: it is renewable, abundant, economic and contains exactly the right ingredients to produce high-quality hydrogen. The drawback is that it contains less-desirable ingredients, such as chlorine, that hinder the conversion technology. An international research team may have developed an alternative processing platform that reaps all the benefits without the chlorine-caused problems of previous attempts.

Durable electrode material improves seawater electrolysis

Credit: Nano Research Energy

Seawater could be the perfect stockfeed for sustainable fuel: it is renewable, abundant, economic and contains exactly the right ingredients to produce high-quality hydrogen. The drawback is that it contains less-desirable ingredients, such as chlorine, that hinder the conversion technology. An international research team may have developed an alternative processing platform that reaps all the benefits without the chlorine-caused problems of previous attempts.

 

They published their results on Sept. 06, 2022 in Nano Research Energy.

 

“Seawater electrolysis is an extremely attractive approach for harvesting clean hydrogen energy, but detrimental chlorines species, such as chloride or hypochlorite, cause severe corrosion at the anode,” said corresponding author Xuping Sun, professor at the University of Electronic Science and Technology of China and at the Shandong Normal University.

 

Electrolysis involves applying an electric charge to water and splitting its constituents, producing hydrogen and oxygen. The hydrogen can be used as clean fuel that emits only water as it burns, instead of the harmful carbon dioxide released by fossil fuels. The cathode, or negative electrode, attracts the OH– and helps them reduce into the target molecules of two hydrogen atoms. Simultaneously, the anode, or positive electrode, pulls the negatively charged molecules and gives them electrons, causing them to oxidize. In seawater electrolysis, however, the anode also attracts negatively charged chlorine elements, which compete with the OH– and can corrode the electrode beyond use.

 

The electrodes used in electrolysis can be made of a variety of noble-metal oxides, oxides without noble metals, and multimetallic oxides, according to Sun, but almost all result in the same competition and corrosion issues with chloride.

 

“Among the material options, layered double hydroxides are verified as a promising alternative for the desired reactions due to their tunable composition, lower costs and good catalytic activities,” Sun said.

 

Layered double hydroxides materials are brucite-like lamellar crystals composed of positive host layers and charge-balancing interlayers. These two layers sandwich water and the negatively attracted particles, such as chloride.

 

“Previous research in our group and others’ has demonstrated that nickel-iron layered double hydrides offer promising catalytic activity and selective oxidation reactions, but the service life of the material requires improvement,” Sun said. “This could be done by inhibiting side reactions, such as chloride corrosion, and improving the exchange of OH–, but long-term stability of at least 100 hours for a large current density has rarely been achieved on this material.”

 

To achieve a more stable electrode, the researchers developed a nickel-iron layered double hydride array on carbon cloth, with benzoate — best known as a food preservative when used with sodium — particles inserted into the layers.

 

“In this work, we report that the approach achieves efficient and stable seawater oxidation electrolysis,” Sun said. “Interestingly, the negatively charged benzoate ions not only act as a corrosion inhibitor with resistance against detrimental chlorine (electro)chemistry but as a proton acceptor to alleviate the local solution pH drop around the layered double hydrides electrode.”

 

In addition, the benzoate ions also expand the interlayer spacing of the material, enabling electrolytes to penetrate and diffuse through it. The platform can perform satisfactory electrolysis uninterrupted for 100 hours without suffering obvious structural change, according to Sun.

 

“This design successfully achieves the multiple needs of an anode toward efficient and stable seawater oxidation,” Sun said. “This work not only provides us with a robust catalyst for high-active seawater oxidation electrolysis, but also may open an exciting avenue to the surface engineering of anodic catalyst materials with enhanced durability.”

 

Other contributors include co-corresponding author Xiaodong Guo, Sichuan University; Longcheng Zhang, Jie Liang, Luchao Yue, Kai Dong, Jun Li, Donglin Zhao, Zerong Li, Shengjun Sun and Yongsong Luo, University of Electronic Science and Technology of China; Qian Liu, Chengdu University; Guanwei Cui, Shandong Normal University; and Abdulmohsen Ali Alshehri, King Abdulaziz University. Zhang is also affiliated with Sichuan University.

 

The National Natural Science Foundation of China supported this work.

 

##

 

About Nano Research Energy 

 

Nano Research Energy is launched by Tsinghua University Press, aiming at being an international, open-access and interdisciplinary journal. We will publish research on cutting-edge advanced nanomaterials and nanotechnology for energy. It is dedicated to exploring various aspects of energy-related research that utilizes nanomaterials and nanotechnology, including but not limited to energy generation, conversion, storage, conservation, clean energy, etc. Nano Research Energy will publish four types of manuscripts, that is, Communications, Research Articles, Reviews, and Perspectives in an open-access form.

 

About SciOpen 

 

SciOpen is a professional open access resource for discovery of scientific and technical content published by the Tsinghua University Press and its publishing partners, providing the scholarly publishing community with innovative technology and market-leading capabilities. SciOpen provides end-to-end services across manuscript submission, peer review, content hosting, analytics, and identity management and expert advice to ensure each journal’s development by offering a range of options across all functions as Journal Layout, Production Services, Editorial Services, Marketing and Promotions, Online Functionality, etc. By digitalizing the publishing process, SciOpen widens the reach, deepens the impact, and accelerates the exchange of ideas.



Journal

Nano Research Energy

DOI

10.26599/NRE.2022.9120028

Article Title

Benzoate anions-intercalated NiFe-layered double hydroxide nanosheet array with enhanced stability for electrochemical seawater oxidation

Article Publication Date

6-Sep-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

AI Advances Enhance Sustainable Recycling of Livestock Waste

AI Advances Enhance Sustainable Recycling of Livestock Waste

October 3, 2025
Crafting Yogurt Using Ants: A Scientific Innovation

Crafting Yogurt Using Ants: A Scientific Innovation

October 3, 2025

Pd-Catalyzed Synthesis of E/Z Trisubstituted Cycloalkenes

October 3, 2025

Hanbat National University Researchers Develop Innovative Method to Enhance Solid Oxide Fuel Cell Efficiency

October 3, 2025

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    93 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    88 shares
    Share 35 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    67 shares
    Share 27 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionizing Language Models with Analog In-Memory Computing

Scientists Analyze Chikungunya Outbreak Patterns to Enhance Prediction and Advance Vaccine Development

Enhancing Pediatric Palliative Care: VR for Provider Wellbeing

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.