• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Dundee-China linkup uncovers secrets of our cellular ‘energy sensor’

Bioengineer by Bioengineer
July 19, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A scientific collaboration between researchers in Scotland and China has uncovered a new kind of `energy sensor' in our cells, changing our understanding of how the body monitors glucose levels and switches on the supply of alternative `fuels'.

It is thought the research, published in the journal Nature, could have particular implications for diabetes, in which the level of glucose in the blood is abnormally high.

The research focused on the activity of a protein called AMPK. Professor Grahame Hardie, of the School of Life Sciences at the University of Dundee, first identified AMPK in the 1990s as a key player in energy production in our bodies, and is one of the world's leading experts on how it works.

The AMPK enzyme is switched on when energy levels in the cell fall, and drives processes which stimulate energy production, while preventing energy-consuming processes.

Working with the group of Professor Shengcai Lin, at the University of Xiamen in China, they have now made a new breakthrough in understanding how this happens.

"Glucose is the primary fuel that cells `burn' to sustain life," said Professor Hardie. "My work in the 1990s showed that AMPK was switched on when the cell's energy state (carried by the chemicals ATP, ADP and AMP, which form a kind of "rechargeable battery") was running low.

"AMPK is important because it enables the body to start burning other `fuels'. For example, during exercise, when the demand for energy is dramatically increased in muscle, AMPK switches on the uptake and metabolism of glucose and fats to provide the required energy.

"It has been known for years that starving cells of glucose switches on AMPK, but everyone had assumed that this worked via the known ability of AMPK to sense changes in the cell's energy status.

"We have now shown that cells can actually sense glucose by a completely different mechanism, in which AMPK is recruited to structures called lysosomes. It is by doing this that cells can switch on pathways for metabolism of alternative fuels, such as fats, when glucose becomes scarce but before cellular energy declines."

Professor Hardie said more work would be needed to understand the full implications of this for human health. However, given the extremely prominent role of glucose in diabetes it is likely to be of significant value in understanding more about the disease.

AMPK is thought to be implicated in other conditions and diseases, including obesity and cancer.

Professor Hardie said the project had combined excellent science from both the UK and China. "Shengcai Lin made the initial exciting findings for this and it has been very rewarding to work with his group in China to sort out how it works," said Professor Hardie.

Professor Shengcai Lin said, "We, the Xiamen team, are very grateful for the fruitful collaboration with Professor Hardie, pioneer of AMPK. I believe the main implication of the work is not only the delineation of the sensing mechanism for glucose levels, but also its enabling us to think glucose is a status signal, the decline of which causes cells to switch off synthetic pathways by inhibiting pro-synthetic activities mediated by another master metabolic regulator called mTORC1."

###

The paper is published online by Nature – http://dx.doi.org/10.1038/nature23275

Professor Hardie's work is supported by the Wellcome Trust and CR-UK. Professor Shengcai Lin's work is supported by grants from the National Key Research and Development Project of China an the National Natural Science Foundation of China.

Media Contact

Roddy Isles
[email protected]
44-013-823-84910
@DundeeUniv

http://www.dundee.ac.uk

http://dx.doi.org/10.1038/nature23275

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Unveiling Arabidopsis Aminotransferases’ Multi-Substrate Specificity

September 13, 2025

Insights on Menstrual Health in Eating Disorder Units

September 12, 2025

Nicotine Dependence Linked to Health Behaviors in Korean Smokers

September 12, 2025

Novel V2O5/ZnO Nanocomposite Electrodes for Energy Storage

September 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unveiling Arabidopsis Aminotransferases’ Multi-Substrate Specificity

Insights on Menstrual Health in Eating Disorder Units

Nicotine Dependence Linked to Health Behaviors in Korean Smokers

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.