• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Duckweed: The low-down on a tiny plant

Bioengineer by Bioengineer
March 26, 2019
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Low mutation rates contribute to low genetic diversity in duckweeds

IMAGE

Credit: Klaus J. Appenroth

Duckweeds – for many aquatic animals like ducks and snails, a treat, but for pond owners, sometimes a thorn in the side. The tiny and fast-growing plants are of great interest to researchers, and not at least because of their industrial applications – for example, to purify wastewater or generate energy. An international research team from Münster, Jena (both Germany), Zurich (Switzerland) and Kerala (India) have recently studied the genomics of the giant duckweed. They discovered that genetic diversity, i.e. the total number of genetic characteristics that are different among individuals, is very low. “This is remarkable given that their population size is very large – there can, for example, be millions of individuals in a single pond”, says Shuqing Xu, professor for plant evolutionary ecology at the University of Münster and lead author of the study.

To understand the reason behind this mystery, a team of plant researchers headed by Dr. Meret Huber from the Max Planck Institute for Chemical Ecology in Jena and the University of Münster measured the mutation rate of this duckweed under outdoor conditions, i.e. how many mutations accumulate per generation. The result: low genetic diversity in this plant was accompanied by an extremely low mutation rate. “Our study emphasizes that accurate estimates of mutation rates are important for explaining patterns of genetic diversity among species”, says Meret Huber. The results are not only relevant for future studies on the evolution of plants, including many crops that have similar reproductive strategies like duckweeds, they will also accelerate the use of duckweeds both for basic research and industrial applications. The study was published in the journal Nature Communications.

Background:

Although mutations are the raw materials for evolutionary changes, they are often accompanied by fitness impairments. Evolutionary researchers have hypothesized that natural selection in species with large populations drives the mutation rate to as low as possible. According to this hypothesis, a species with a very large population size may under certain conditions evolve an extremely low mutation rate – which in turn can result in a very low genetic diversity. Until now, however, scientists had not been able to show this connection in eukaryotes, i.e. organisms whose cells have a nucleus. One reason for this is that mutation rates are difficult to measure experimentally.

The researchers took samples of the giant duckweed (Spirodela polyrhiza) from 68 waterbodies distributed all over the world and read the DNA sequences of their entire genomes. They found that in congruence with their geographic origin the samples fall into four genetic clusters: America, Europe, India and Southeast Asia. Based on the genome sequence information, they found that the genetic diversity of the species is among the lowest values reported in multicellular eukaryotes.

Because genetic diversity is determined by mutation rate and effective population size, the scientists then experimentally estimated the mutation rates and calculated effective population size. Since external conditions can influence the mutation rate, they performed the experiments under outdoor conditions. The result: by sequencing genomes, they found that the mutation rate in the giant duckweed was the lowest ever determined for multicellular eukaryotes. The estimated effective population size, as expected, is rather large.

The researchers suspect that the enormous population size of the giant duckweed, and therefore the large possibilities of selection in the course of evolution, has led to the reduction of mutations to a minimum. This in turn can explain the low genetic diversity. “Our study provides new insights into why and how genetic diversity differs among different species”, says Shuqing Xu.

Together with their collaborators, the scientists are currently working on analyzing genomes of even more duckweed samples and plan to carry out outdoor selection experiments. They wish to discover which other factors might have played roles in shaping the evolution of this plant.

###

Original publication: S. Xu et al. (2019): Low genetic variation is associated with low mutation rate in the giant duckweed. Nature Communications; DOI: 10.1038/s41467-019-09235-5

Media Contact
Shuqing Xu (lead author)
[email protected]

Original Source

https://www.uni-muenster.de/news/view.php?cmdid=10163&lang=en

Related Journal Article

http://dx.doi.org/10.1038/s41467-019-09235-5

Tags: BiologyEvolutionPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Genomic Analysis Reveals How Cavefish Evolved to Lose Their Eyes

Genomic Analysis Reveals How Cavefish Evolved to Lose Their Eyes

August 27, 2025
blank

Unraveling Hypospadias: Genetics and Development Insights

August 27, 2025

Dynamic Fusion Model Enhances scRNA-seq Clustering

August 27, 2025

Scientists Unveil First Complete Structure of Botulinum Neurotoxin Complex

August 27, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Gen Z Nurses: Workplace Expectations and Preferences Unveiled

Wayne State Study Advances Quality of Life for Individuals with Type 1 Diabetes

Humanoid Robots Progressing Rapidly, Yet Confront Significant ‘Data Gap’

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.