• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Drug-resistant fungi are thriving in even the most remote regions of Earth

Bioengineer by Bioengineer
June 21, 2023
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New McMaster research has found that a disease-causing fungus — collected from one of the most remote regions in the world — is resistant to a common antifungal medicine used to treat infections.

Jianping Xu

Credit: McMaster University

New McMaster research has found that a disease-causing fungus — collected from one of the most remote regions in the world — is resistant to a common antifungal medicine used to treat infections.

The study, published today in mSphere, showed that seven per cent of Aspergillus fumigatus samples collected from the Three Parallel Rivers region in Yunnan, China were drug resistant.

Perched 6,000 metres above sea level and guarded by the staggering glaciated peaks of the Eastern Himalayas, the region is sparsely populated and undeveloped, which makes the presence of antimicrobial-resistant strains of A. fumigatus all the more striking for Jianping Xu, who led the study with colleagues in China.

“Seven per cent may seem like only a small number, but these drug-resistant strains are capable of propagating very quickly and taking over local and regional populations of this species,” explains Xu, a professor of biology at McMaster University and a member of the Michael G. DeGroote Institute for Infectious Disease Research. “There is a need for increased surveillance of drug resistance in the environment across diverse geographic regions.”

This study is the third in a trio of related studies by Xu and colleagues. The first study found that approximately 80 per cent of A. fumigatus samples from Yunnan greenhouses were resistant to commonly used antifungal drugs, while the second study determined that around 15 per cent of samples from Yunnan agricultural fields, lake sediments, and forests were likewise resistant.

Xu, whose research also supports the Global Nexus School for Pandemic Prevention & Response, says that while there is increasing evidence supporting the natural development of resistance in the environment, the outward gradation of resistance from greenhouses indicates that these resistant Himalayan strains of A. fumigatus were likely born from the spores of other fungi that were overexposed to agricultural fungicides in other settings.

That these drug-resistant spores could potentially travel to and propagate in such remote areas is concerning for global spread, Xu says.

“This fungus is highly ubiquitous — it’s around us all the time,” he explains. “It is estimated that we all inhale hundreds of spores of this species every day. While it doesn’t always cause noticeable health problems, three to four million people experience disease symptoms caused by A. fumigatus each year. It can be very dangerous — it can lead to lung removal or even death — and now, increasingly, many of these infections will be impacted by drug resistance.”

Already, in conducting other research, Xu has examined identical mechanisms of resistance in strains of fungi found in the Northwest Territories and India — some 10,000 kilometres apart.

“Unlike viruses like COVID-19, fungi don’t need a host to spread,” Xu explains. “They can travel on humans, through trade, and even on strong winds.”

With the latter in mind, Xu will soon head back to the mountainous regions of China to sample the air for fungal spores, which he hopes will add clarity to how these resistant strains are reaching and growing in such remote regions.



Journal

mSphere

DOI

10.1128/msphere.00071-23

Method of Research

Experimental study

Subject of Research

Cells

Article Title

Genetic Structure and Triazole Resistance among Aspergillus fumigatus Populations from Remote and Undeveloped Regions in Eastern Himalaya

Article Publication Date

21-Jun-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Early Hyperglycemia Linked to Risks in Low Birth Weight Infants

August 29, 2025

NEXN Prevents Vascular Calcification via SERCA2 SUMOylation

August 29, 2025

Predictive Models Shape Transplant Eligibility Decisions

August 29, 2025

Enhanced Visualization of Microcystic Macular Edema in OCT

August 29, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Early Hyperglycemia Linked to Risks in Low Birth Weight Infants

Isolating a Robust Heat-Resistant Metalloprotease from Geobacillus

NEXN Prevents Vascular Calcification via SERCA2 SUMOylation

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.