• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Droplet explosion by shock waves, relevant to nuclear medicine

Bioengineer by Bioengineer
November 22, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

An arrow shooting through an apple, makes for a spectacular explosive sight in slow motion. Similarly, energetic ions passing through liquid droplets induce shock waves, which can fragment the droplets. In a study published in EPJ D, Eugene Surdutovich from Oakland University, Rochester, Michigan, USA with his colleagues from the MBN Research Centre, Frankfurt, Germany have proposed a solution to observe the predicted ion-induced shock waves. They believe these can be identified by observing the way incoming ions fragment liquid droplets into multiple smaller droplets. The discovery of such shock waves would change our understanding of the nature of radiation damage with ions to cancerous tumour. This matters for the optimisation of ion-beam cancer therapy, which requires a thorough understanding of the relation between the physical characteristics of the incoming ion beam and its effects on biological tissues.

In nuclear medicine, ion beams – using protons and carbon ions–have been used clinically in the radiotherapy treatment of cancer tumours since the 1990s. Unlike X-rays, their ability to penetrate the body and release a peak of energy commensurate with the energy of the incoming ions at a desired location makes them ideal for targeting deeply-seated tumours.

The predicted shock waves significantly contribute to the thermomechanical damage deliberately inflicted on tumour tissue. Specifically, the collective flow intrinsic to the shock waves helps to propagate biologically harmful reactive species, such as free radicals, stemming from the ions. This mechanism increases the volume of tumour cells exposed to reactive species.

In the presence of shock waves, the authors show that, within 100 picoseconds, a droplet hit by an ion gets fragmented into much smaller droplets if its radius is somewhere between 30 and 1000 nanometres. This work suggests a way to directly observe these shock waves experimentally.

###

Reference: E. Surdutovich, A Verkhovtsev , and A. V. Solov'yov (2017), Ion-impact-induced multifragmentation of liquid droplets, European Physical Journal D 71: 285, DOI: 10.1140/epjd/e2017-80121-y

Media Contact

Sabine Lehr
[email protected]
49-622-148-78336
@SpringerNature

http://www.springer.com

http://www.springer.com/gb/about-springer/media/research-news/all-english-research-news/quantum-manipulation-power-for-quantum-information-processing-ge/15245188

Related Journal Article

http://dx.doi.org/10.1140/epjd/e2017-80121-y

Share12Tweet8Share2ShareShareShare2

Related Posts

Programmable Promoter Editing Enables Precise Transgene Control

October 13, 2025
AI Co-Pilots Enhance Brain-Computer Interface Control

AI Co-Pilots Enhance Brain-Computer Interface Control

October 13, 2025

High-Risk HPV and Cervical Lesions in HIV+ Women

October 13, 2025

Building Multifunctional Soil from Urban Organic Waste

October 13, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1229 shares
    Share 491 Tweet 307
  • New Study Reveals the Science Behind Exercise and Weight Loss

    103 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    100 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    91 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Programmable Promoter Editing Enables Precise Transgene Control

AI Co-Pilots Enhance Brain-Computer Interface Control

High-Risk HPV and Cervical Lesions in HIV+ Women

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.