• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, December 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Dopamine regulates insulin secretion through a complex of receptors, finds new study

Bioengineer by Bioengineer
June 22, 2022
in Biology
Reading Time: 3 mins read
0
The Mechanism of Insulin Secretion Regulation by Dopamine
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Diabetes is a lifelong, chronic health condition caused by abnormalities in the body’s production and use of the hormone insulin. Research has shown that the feel-good hormone, dopamine (DA), plays a key role in how the body regulates the production of insulin. Typically, insulin is secreted by cells in the pancreas called ‘beta-cells,’ in response to glucose—a process that is aptly called ‘glucose-stimulated insulin secretion (GSIS). DA negatively regulates GSIS, leading to transient changes in the body’s levels of insulins. But the mechanism behind this regulation was unknown, until now.

The Mechanism of Insulin Secretion Regulation by Dopamine

Credit: Tokyo Tech

Diabetes is a lifelong, chronic health condition caused by abnormalities in the body’s production and use of the hormone insulin. Research has shown that the feel-good hormone, dopamine (DA), plays a key role in how the body regulates the production of insulin. Typically, insulin is secreted by cells in the pancreas called ‘beta-cells,’ in response to glucose—a process that is aptly called ‘glucose-stimulated insulin secretion (GSIS). DA negatively regulates GSIS, leading to transient changes in the body’s levels of insulins. But the mechanism behind this regulation was unknown, until now.

Recently, a team led by researchers from Tokyo Institute of Technology (Tokyo Tech) uncovered the precise mechanism through which DA regulates insulin secretions. Using a technique called “total internal reflection fluorescence microscopy,” they were able to reveal that DA “receptors”—proteins on cells that DA can bind to—called D1 and D2, act in concert to achieve the transient regulation of insulin.

“We found that D1 receptor antagonists—drugs that block D1 receptors from activation—decreased the dopamine-mediated inhibition of insulin secretion. We also saw that overexpression of only D2 receptors on beta cells exerted an inhibitory and toxic effect and abolished insulin secretion in beta-cells. This gave us a clue to the mechanism of down-regulation,” explains Prof. Shoen Kume of Tokyo Tech, who led the study.

The research team then performed further experiments called “proximity ligation” and “Western blot assays” to study the receptors further. They found that D1 and D2 bound to each other to form a complex called a “heteromer.” When activated by DA, this heteromer transiently inhibited insulin secretion. They also saw that when D1 and D2 were co-expressed on beta-cells, the cells were able to bypass the toxic effects of D2 overexpression.

Dr. Kume says, “From these findings it can be concluded that D1 modulates D2 signaling to protect beta-cells from the harmful effects of DA. This study greatly improves our understanding of DA signaling in diabetes.”

Understanding the mechanism of DA signaling in the regulation of insulin secretion is sure to provide new therapeutic targets for the prevention, treatment, and management of diabetes.



Journal

Diabetes

DOI

10.2337/db21-0644

Method of Research

Experimental study

Subject of Research

Cells

Article Title

Dopamine negatively regulates insulin secretion through activation of D1-D2 receptor heteromer

Article Publication Date

22-Jun-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Unveiling Hormone Genes in Prunus persica Seed Dormancy

Unveiling Hormone Genes in Prunus persica Seed Dormancy

December 15, 2025
blank

Harnessing Microbial Siderophores for Plant Iron Nutrition

December 15, 2025

Zoonotic Streptococcus Uses Glucose to Boost Growth

December 15, 2025

Genomic Insights into Drug-Resistant Salmonella in China

December 15, 2025

POPULAR NEWS

  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    122 shares
    Share 49 Tweet 31
  • Nurses’ Views on Online Learning: Effects on Performance

    69 shares
    Share 28 Tweet 17
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    70 shares
    Share 28 Tweet 18
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    71 shares
    Share 28 Tweet 18

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Late-Onset Ovarian Hyperstimulation Syndrome in Older Mothers

MKK4 and MKK7 Regulate Retinal Cell Degeneration

Emotional Control in Bariatric Surgery Candidates Explored

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.