• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Does genome sequencing increase downstream costs?

Bioengineer by Bioengineer
March 22, 2018
in Health
Reading Time: 5 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

As genome sequencing enters the clinic, fears have arisen about its potential to motivate follow-up testing and ongoing screening that could drastically increase health care spending. But few studies have quantified the downstream costs of returning genetic information to patients, especially ostensibly healthy patients. The MedSeq Project, led by investigators at Brigham Women's Hospital, is the first randomized trial to provide whole genome sequencing to both presumably healthy patients as well as those with a known cardiology issue. As part of this pilot study, the project analyzed both the immediate costs of sequencing itself as well as downstream spending six months after genetic information was returned to physicians and their patients. The research team found that downstream costs did not significantly differ between patients who had received whole genome sequencing and those that did not. The team's findings are reported today in Genetics in Medicine, the peer-reviewed journal of the American College of Medical Genetics and Genomics.

"Whole genome sequencing is coming of age, but there's fear that with these advancements will come rocketing health care costs," said lead author Kurt Christensen, MPH, PhD, an instructor of medicine in the Division of Genetics at BWH. "Our pilot study is the first to provide insights into the cost of integrating whole genome sequencing into the everyday practice of medicine. Our data provide reassurance that physicians seem to be responding responsibly and that we're not seeing evidence of dramatically increased downstream spending."

The MedSeq Project includes 100 healthy primary care patients and 100 cardiology patients with cardiomyopathy diagnoses. Patients in the control arm of the study received a review of their family history; patients in the experimental arm of the trial received a review of their family history plus a whole genome sequencing analysis and report. For each participant, more than 4,600 genes associated with genetic disease were analyzed, and findings also included information about carrier status, drug implications and risk for diseases associated with multiple genetic markers.

Using data from patients' medical records as well as services reported in patient surveys, the team tracked health care costs incurred in the six months after patients received their results. For both primary care and cardiology patients, there was no significant difference in the average downstream costs for patients in the control group versus patients who received whole genome sequencing. For cardiology patients, the average cost for the control group was $10,838 and $8,492 for the sequencing group. For primary care patients, the average costs for the control group was $3,175 and $3,566 for the sequencing group.

Sequencing did identify health-relevant genetic information in a large majority of participants, including diagnosis-related variants in half of sequenced cardiology patients and additional disease risks in eight cardiology patients and 13 primary care patients.

Robert Green, MD, MPH, professor of medicine at BWH and Harvard Medical School and a senior author on the paper noted: "This study demonstrates the power of a randomized trial where outcomes can be compared between those who were sequenced and those who were not sequenced but were followed in exactly the same way. Observational studies where sequencing is offered to anyone who wishes it cannot achieve the same methodological rigor. Our challenge now is to replicate these findings in a larger sample size and over a longer period of time."

The average cost per patient for sequencing itself was a little more than $5,000 for both cardiology and primary care patients, a total that includes the costs of sequencing, interpretation and disclosure.

While it's important to understand the short-term and immediate costs of sequencing, the team notes that six months may be too short a period to observe the full impact of sequencing on costs and health benefits. They plan to extend their study to follow patients for five years.

"Though there are limitations to our pilot study, our work provides novel and much-needed data to help decision makers begin to understand the short-term cost implications of integrating whole genome sequencing into clinical care, and provides insight about what data are needed to provide more clarity about the economic implications of this technology," said Christensen.

###

This study was supported by NIH grants U01-HG006500, K01-HG009173, KL2-TR001100, and R01-HG007063, and Career Development Award IK2-CX001262 from the VA Clinical Sciences Research and Development Service. This work was conducted with support from Harvard Catalyst | The Harvard Clinical and Translational Science Center (National Center for Research Resources and National Center for Advancing Translational Sciences, NIH grant UL1-TR001102) and financial contributions from Harvard University and its affiliated academic health care centers.

The Genomes2People Research Program at Brigham and Women's Hospital, the Broad Institute and Harvard Medical School is directed by Robert C. Green, MD, MPH and conducts empirical research in translational genomics and health outcomes. NIH-funded research within G2P seeks to understand the medical, behavioral and economic impact of using genetic risk information to inform future standards for implementing genomic medicine. The BabySeq Project is recruiting families of both healthy and sick newborns into a randomized clinical trial where half will have their baby's genome sequenced. The MilSeq Project is examining sequencing within the military. The MedSeq Project has conducted the first randomized clinical trial to measure the impact of whole genome sequencing on the practice of medicine. REVEAL Study has conducted several randomized clinical trials examining the impact of disclosing genetic risk for a frightening disease. And the Impact of Personal Genomics (PGen) Study examined the impact of direct-to-consumer genetic testing on over 1000 consumers of two different companies. Visit genomes2people.org for more and follow us on Twitter @Genomes2People.

Brigham and Women's Hospital (BWH) is a 793-bed nonprofit teaching affiliate of Harvard Medical School and a founding member of Partners HealthCare. BWH has more than 4.2 million annual patient visits and nearly 46,000 inpatient stays, is the largest birthing center in Massachusetts and employs nearly 16,000 people. The Brigham's medical preeminence dates back to 1832, and today that rich history in clinical care is coupled with its national leadership in patient care, quality improvement and patient safety initiatives, and its dedication to research, innovation, community engagement and educating and training the next generation of health care professionals. Through investigation and discovery conducted at its Brigham Research Institute (BRI), BWH is an international leader in basic, clinical and translational research on human diseases, more than 3,000 researchers, including physician-investigators and renowned biomedical scientists and faculty supported by nearly $666 million in funding. For the last 25 years, BWH ranked second in research funding from the National Institutes of Health (NIH) among independent hospitals. BWH is also home to major landmark epidemiologic population studies, including the Nurses' and Physicians' Health Studies and the Women's Health Initiative as well as the TIMI Study Group, one of the premier cardiovascular clinical trials groups. For more information, resources and to follow us on social media, please visit BWH's online newsroom.

Media Contact

Haley Bridger
[email protected]
617-525-8368
@BrighamWomens

http://www.brighamandwomens.org

Share12Tweet7Share2ShareShareShare1

Related Posts

Testosterone Levels Linked to HDL and Immune Cells

September 1, 2025

Polyethylene Glycol Loxenatide Enhances Insulin Therapy in Diabetes

September 1, 2025

Celiac Disease Microbiome and Metabolomics in Chinese Populations

September 1, 2025

Collaborative Mental Health Interventions for Vulnerable Groups

September 1, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    143 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Do people and monkeys see colors the same way?

    112 shares
    Share 45 Tweet 28

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Physics-Informed Deep Learning Solves Complex Discontinuous Inverse Problems

Testosterone Levels Linked to HDL and Immune Cells

NiFe2O4-Bamboo Carbon Composite: A Game-Changer for Dye Solar Cells

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.