• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, July 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Do wind instruments disperse COVID aerosol droplets?

Bioengineer by Bioengineer
August 16, 2022
in Health
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

WASHINGTON, August 16, 2022 – During the COVID-19 pandemic, many live musical events and festivals were postponed and even canceled to protect musicians and audience members. When they started performing again, many groups resorted to performing with remote or limited crowds. They also adapted their repertoire to promote pieces featuring strings and made significant changes in the number of musicians and their positions in the auditorium.

Visualization of flow emanating from a tuba using the laser sheet technique

Credit: Paulo E. Arratia

WASHINGTON, August 16, 2022 – During the COVID-19 pandemic, many live musical events and festivals were postponed and even canceled to protect musicians and audience members. When they started performing again, many groups resorted to performing with remote or limited crowds. They also adapted their repertoire to promote pieces featuring strings and made significant changes in the number of musicians and their positions in the auditorium.

Orchestral ensembles have faced a particular challenge. Contamination is a chief concern: specifically, whether wind instruments are vectors of contamination through aerosol dispersion.

In Physics of Fluids, by AIP Publishing, researchers from the University of Pennsylvania worked with musicians from the Philadelphia Orchestra to deepen our understanding of how much aerosol is produced and dispersed by wind instruments.

“Ideally, musicians would sit near one another to compose the best sound, but such an arrangement became an issue during the COVID pandemic,” said author Paulo Arratia, of the University of Pennsylvania.

The researchers used visualization to characterize the flow and then tracked fog particles in the air with a laser. They also measured aerosol concentration from wind instruments with a particle counter.

Then they combined these two measurements to develop a simple equation to describe aerosol dispersion, in which the aerosol speed decays with distance from the instrument. The idea is to help other researchers determine how far aerosols will travel by measuring the exit flow speed. This informs how fast the flow will decay.

Aerosols emitted by wind instruments shared a similar concentration and size distribution compared to normal speech and respiration events.

“We were surprised that the amount of aerosol produced is of the same range as normal speech,” said Arratia. “I was expecting much higher flow speeds and aerosol concentrations.”

Flow measurements (using particle image velocimetry) showed that exit jet speeds are much lower than coughing and sneezing events. For most instruments, the maximum decay length is less than 2 meters from the instrument’s opening. Consequently, wind musicians should stay 6 feet apart, similar to the recommendation for individuals.

The researchers will next look at contamination through aerosol dispersion from a group standpoint to understand how much aerosol and flow is produced by the whole orchestra playing together.

“Hopefully, this manuscript will guide health officials to develop protocols for safe, live musical events,” said Arratia.

###

The article “Flow and aerosol dispersion from wind musical instruments” is authored by Quentin Brosseau, Ranjiangshang Ran, Ian Graham, Douglas J. Jerolmack, and Paulo E. Arratia. The article will appear in Physics of Fluids on Aug. 16, 2022 (DOI: 10.1063/5.0098273). After that date, it can be accessed at https://doi.org/10.1063/5.0098273.  

ABOUT THE JOURNAL

Physics of Fluids is devoted to the publication of original theoretical, computational, and experimental contributions to the dynamics of gases, liquids, and complex fluids. See https://aip.scitation.org/journal/phf.

###



Journal

Physics of Fluids

DOI

10.1063/5.0098273

Article Title

Flow and aerosol dispersion from wind musical instruments

Article Publication Date

16-Aug-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Epicardial Fat: Protector or Threat to Heart Health?

July 26, 2025
blank

Glymphatic Asymmetry Linked to Parkinson’s Onset Side

July 26, 2025

Theta Stimulation Boosts Conflict Resolution in Parkinson’s

July 26, 2025

Faecal Transplants Show Safety in Parkinson’s Pilot

July 26, 2025

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    53 shares
    Share 21 Tweet 13
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    45 shares
    Share 18 Tweet 11
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding FLS2 Unveils Broad Pathogen Detection Principles

Advanced Pressure-Velocity Patch Enhances Flight Detection

Durable, Flexible Electrochemical Transistors via Electropolymerized PEDOT

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.