• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home Headlines

Do mast cells contribute to more severe disease in dengue infection?

Bioengineer.org by Bioengineer.org
January 20, 2018
in Headlines, Health, Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Mary Ann Liebert, Inc., publishers

New Rochelle, NY, June 12, 2017–Why mosquito-borne dengue virus causes more severe disease in some individuals, including hemorrhagic fever with or without shock, remains controversial and researchers are focusing on the factors related to the interaction between the virus and the host immune system, including the role of mast cells. An in-depth review of the latest research showing how mast cells can be both protective and can contribute to the most severe forms of dengue is presented in the article "Role of Mast Cells in Dengue Virus Pathogenesis," published in DNA and Cell Biology, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers. The article is available free on the DNA and Cell Biology website through July 3, 2017.

Coauthors Berlin Londono-Renteria, Kansas State University, Manhattan, KS, Julio Marinez-Angarita, Instituto Nacional de Salud, Bogota, Colombia, and Andrea Troupin and Tonya Colpitts, University of South Carolina School of Medicine, Columbia, SC, study how mast cells recognize and interact with dengue virus and how mosquito saliva may affect the degranulation response of mast cells and the local immune responses during dengue virus infection in human skin. The researchers provide insights on what occurs during the early stages of dengue transmission and the mechanisms involved in mast cell activation and degranulation, which can increase the permeability of the human vasculature, causing it to become leaky.

"Mast cells are best known for their roles in allergies (such as pollen or food) and, for rare people, sensitivity to the saliva injected by mosquitos during bites. In this BIT, Colpitts and co-authors demonstrate the contributions of these cells to the pathogenesis of dengue, a severe disease," says Carol Shoshkes Reiss, PhD, Editor-in-Chief of DNA and Cell Biology and Professor, Departments of Biology and Neural Science, and Global Public Health at New York University, NY. "Understanding this may lead us to new approaches to the treatment of dengue fever and dengue shock syndrome. The latter secondary infection can be life-threatening."

###

About the Journal

DNA and Cell Biology is the trusted source for authoritative, peer-reviewed reporting on the latest research in the field of molecular biology. By combining mechanistic and clinical studies from multiple systems in a single journal, DNA and Cell Biology facilitates communication among biological sub-disciplines. Coverage includes gene structure, function, and regulation, molecular medicine, cellular organelles, protein biosynthesis and degradation, and cell-autonomous inflammation and host cell response to infection. Complete tables of content and a sample issue may be viewed on the DNA and Cell Biology website.

About the Publisher

Mary Ann Liebert, Inc., publishers is a privately held, fully integrated media company known for establishing authoritative peer-reviewed journals in many promising areas of science and biomedical research, including Human Gene Therapy, Antioxidants and Redox Signaling, and AIDS Research and Human Retroviruses. Its biotechnology trade magazine, GEN (Genetic Engineering & Biotechnology News), was the first in its field and is today the industry's most widely read publication worldwide. A complete list of the firm's 80 journals, books, and newsmagazines is available on the Mary Ann Liebert, Inc., publishers website.

Media Contact

Kathryn Ryan
[email protected]
914-740-2250
@LiebertPub

http://www.liebertpub.com

Original Source

http://www.liebertpub.com/global/pressrelease/do-mast-cells-contribute-to-more-severe-disease-in-dengue-infection/2194/ http://dx.doi.org/10.1089/dna.2017.3765

Share12Tweet8Share2ShareShareShare2

Related Posts

Impact of Drying Methods on Synbiotic Encapsulation

Impact of Drying Methods on Synbiotic Encapsulation

November 26, 2025

Transforming Lung Cancer Biomarker into Colorectal Risk Tool

November 26, 2025

Strengthening Pediatric Academic Medicine Amid Challenges

November 26, 2025

Exploring Links Between Eating Disorders and PTSD

November 26, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    203 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    119 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    94 shares
    Share 38 Tweet 24
  • Scientists Create Fast, Scalable In Planta Directed Evolution Platform

    100 shares
    Share 40 Tweet 25

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of Drying Methods on Synbiotic Encapsulation

Transforming Lung Cancer Biomarker into Colorectal Risk Tool

Strengthening Pediatric Academic Medicine Amid Challenges

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.