• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

DNA vaccine against Ebola virus shows potent & long-term efficacy in preclinical studies

Bioengineer by Bioengineer
October 10, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

PHILADELPHIA — (October 10, 2018) — A novel synthetic DNA vaccine developed based on technology pioneered by scientists at The Wistar Institute Vaccine & Immunotherapy Center offers complete protection from Zaire Ebolavirus (EBOV) infection in promising preclinical research. Study results were published online in the Journal of Infectious Diseases.

Ebola virus infection causes a severe hemorrhagic fever that has a 50% fatality rate, according to the World Health Organization. Recent advances have led to the development of promising experimental vaccine candidates that may be associated with side effects and/or may not be applicable in specific vulnerable populations, such as children, pregnant women and immunocompromised individuals. In addition, there is a need to boost these vaccines to provide long-term protection.

Using a unique approach, Wistar scientists designed optimized synthetic DNA vaccine candidates targeting a virus surface protein called glycoprotein. They demonstrated efficacy of the novel vaccine candidates and durability of the immune responses in animal models. Importantly, results showed strong immune responses one year after the last dose, supporting the long-term immunogenicity of the vaccine – a particularly challenging area for Ebola vaccines.

"Synthetic non-viral based DNA technology allows for rapid vaccine development by delivery directly into the skin, resulting in consistent, potent and rapid immunity compared to traditional vaccine approaches," said lead researcher David B. Weiner, Ph.D., executive vice president and director of Wistar's Vaccine & Immunotherapy Center, and W.W. Smith Charitable Trust Professor in Cancer Research. "An anti-Ebola virus DNA vaccine like this may provide an important new tool for protection, and we are excited to see what future studies will unveil."

The researchers optimized a shorter, dose-sparing, immunization regimen and simplified vaccine administration directly into the skin. This new approach induced rapid and protective immunity from virus challenges. The detected antibody levels were equal or higher to those reported for other vaccines currently being evaluated in the clinic, according to the study.

"The success of intradermal delivery of a low-dose regimen is very encouraging," said Ami Patel, Ph.D., associate staff scientist in the Weiner Lab. "The ultimate goal of our work is to create effective and safe vaccines that are optimized for field use in at-risk areas."

###

This work was supported in part by a grant from the Defense Advanced Research Projects Agency (DARPA) to Inovio Pharmaceuticals and a subcontract to The Wistar Institute/University of Pennsylvania. Additional funding was provided by Inovio Pharmaceuticals.

Co-authors of this study from The Wistar Institute include Emma L. Reuschel, Daniel H. Park, Amelia A. Keaton, and Kar Muthumani. Other co-authors include Kimberly A. Kraynyak, Dinah Amante, Megan C. Wise, Jewell Walters, Jean Boyer, Kate E. Broderick, Jian Yan, Amir S. Khan, and Niranjan Y. Sardesai from Inovio Pharmaceuticals, Inc.; Trina Racine, Jonathan Audet, Gary Wong, Marc-Antoine de La Vega, Shane Jones, Alexander Bello, Geoff Soule, Kaylie N. Tran, Shihua He, Kevin Tierney, and Xiangguo Qiu from National Microbiology Laboratory, Public Health Agency of Canada; Veronica L. Scott from William Carey University; Daniel O. Villarreal, Devon J. Shedlock, and Ross Plyler from University of Pennsylvania; Gary P. Kobinger from Université Laval, Canada.

The Wistar Institute is an international leader in biomedical research with special expertise in cancer and infectious disease research and vaccine development. Founded in 1892 as the first independent nonprofit biomedical research institute in the United States, Wistar has held the prestigious Cancer Center designation from the National Cancer Institute since 1972. The Institute works actively to ensure that research advances move from the laboratory to the clinic as quickly as possible. wistar.org.

Media Contact

Darien Sutton
[email protected]
215-898-3988
@TheWistar

Home

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Comparing ZISO-Driven Carotenoid Production in Dunaliella Species

September 19, 2025
When Metabolism Powers More Than Just Fuel: Exploring Its Expanded Role

When Metabolism Powers More Than Just Fuel: Exploring Its Expanded Role

September 19, 2025

UGA Ecologists Discover Two New Bass Species

September 19, 2025

Watch and Listen: Underwater Acrobatics of the World’s Smallest Marine Dolphin Featured in Science Magazine

September 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Managing Hemolytic Disease in Newborns: Key Insights

Comparing ZISO-Driven Carotenoid Production in Dunaliella Species

Advancing Quantum Chemistry: Enhancing Accuracy in Key Simulation Methods

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.