• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Nanotechnology

DNA origami to create 2-D structures

Bioengineer by Bioengineer
June 4, 2014
in Nanotechnology
Reading Time: 2 mins read
1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists at New York University and the University of Melbourne have developed a method using DNA origami to turn one-dimensional nano materials into two dimensions. Their breakthrough, published in the latest issue of the journal Nature Nanotechnology, offers the potential to enhance fiber optics and electronic devices by reducing their size and increasing their speed.

DNA origami to create 2-D structures

“We can now take linear nano-materials and direct how they are organized in two dimensions, using a DNA origami platform to create any number of shapes,” explains NYU Chemistry Professor Nadrian Seeman, the paper’s senior author, who founded and developed the field of DNA nanotechnology, now pursued by laboratories around the globe, three decades ago.

Seeman’s collaborator, Sally Gras, an associate professor at the University of Melbourne, says, “We brought together two of life’s building blocks, DNA and protein, in an exciting new way. We are growing protein fibers within a DNA origami structure.”

DNA origami employs approximately two hundred short DNA strands to direct longer strands in forming specific shapes. In their work, the scientists sought to create, and then manipulate the shape of, amyloid fibrils—rods of aggregated proteins, or peptides, that match the strength of spider’s silk.

To do so, they engineered a collection of 20 DNA double helices to form a nanotube big enough (15 to 20 nanometers—just over one-billionth of a meter—in diameter) to house the fibrils.

The platform builds the fibrils by combining the properties of the nanotube with a synthetic peptide fragment that is placed inside the cylinder. The resulting fibril-filled nanotubes can then be organized into two-dimensional structures through a series of DNA-DNA hybridization interactions.

“Fibrils are remarkably strong and, as such, are a good barometer for this method’s ability to form two-dimensional structures,” observes Seeman. “If we can manipulate the orientations of fibrils, we can do the same with other linear materials in the future.”

Seeman points to the promise of creating two-dimensional shapes on the nanoscale.

“If we can make smaller and stronger materials in electronics and photonics, we have the potential to improve consumer products,” Seeman says. “For instance, when components are smaller, it means the signals they transmit don’t need to go as far, which increases their operating speed. That’s why small is so exciting—you can make better structures on thetiniest chemical scales.”

Other NYU researchers included Anuttara Udomprasert, Ruojie Sha, Tong Wang, Paramjit Arora, and James W. Canary.

Story Source:

The above story is based on materials provided by New York University.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

‘Endless possibilities’ for bio-nanotechnology

October 8, 2014
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Virtual Reality Enhances Neonatal Resuscitation Training Pilot

Fat Cells Respond to Misleading Signals

Advancing Database Technology to Enhance Detection of Designer Drugs

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.