• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

DNA discovery could help shed light on rare childhood disorder

Bioengineer by Bioengineer
September 21, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New insights into how our cells store and manage DNA during cell division could help point towards the causes of a rare developmental condition.

The findings may also help researchers understand how genes are turned on in a process linked to Cornelia de Lange syndrome – a severe condition that thwarts physical and intellectual development in children.

Scientists showed how proteins in cells work together to package DNA and ensure that it is correctly passed on – in the form of parcels called chromosomes – to new cells that are formed during cell division.

Researchers from the University of Edinburgh and Harvard University set out to better understand how the proteins that carry out these complex tasks work together.

Their study built on previous research that examined how yeast cells – which are used as model organisms – are able to carry out cell divisions without errors.

The team applied imaging technology and genetic analysis to yeast cells to map the molecular interactions involved.

Their findings shows how proteins associated with chromosomes work to set up an environment that ensures careful maintenance of the genetic material.

These proteins carry out a strategy in which biochemical components in the cell designate sections of DNA at which proteins are recruited to organise the genetic material. The results showed the importance of careful timing in this series of steps.

Their study, funded by Wellcome and the Howard Hughes Medical Institute, was published in Cell.

Dr Adele Marston, of the University of Edinburgh's School of Biological Sciences, who took part in the study, said: "For the first time, we've been able to demonstrate biological mechanisms that underpin the organisation of specific pieces of DNA at the right time.

"This is a vitally important process for healthy cell division and to ensure that our genetic material functions correctly. This outcome has the potential to influence how scientists think about important unsolved problems in human biology."

###

Media Contact

Catriona Kelly
[email protected]
44-779-135-5940
@edinunimedia

http://www.ed.ac.uk

Share12Tweet7Share2ShareShareShare1

Related Posts

Demographic Changes May Drive Rise in Drug-Resistant Infections Across Europe

Demographic Changes May Drive Rise in Drug-Resistant Infections Across Europe

November 4, 2025
Pond Management Strategies Could Boost Native Salamander Conservation

Pond Management Strategies Could Boost Native Salamander Conservation

November 4, 2025

New Study Explores the Impact of Mucus Plugs in COPD Development

November 4, 2025

Angelica gigas Nakai Heals PCOS: Network Pharmacology Insights

November 4, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Carving Innovation: Novel Method Crafts Advanced Materials from Simple Plastics

Revolutionary Knitting Machine Constructs Solid 3D Objects

Integrating Universal Screening and School-Based Mental Health Initiatives into Classroom Settings

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.