• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

DNA delivery technology joins battle against drug-resistant bacteria

Bioengineer by Bioengineer
June 19, 2017
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Antimicrobial resistance is one of the biggest threats to global health, affecting anyone, at any age, in any country, according to the World Health Organization. Currently, 700,000 deaths each year are attributed to antimicrobial resistance, a figure which could increase to 10 million a year by 2050 save further intervention.

New breakthrough technology from Tel Aviv University facilitates DNA delivery into drug-resistant bacterial pathogens, enabling their manipulation. The research expands the range of bacteriophages, which are the primary tool for introducing DNA into pathogenic bacteria to neutralize their lethal activity. A single type of bacteriophage can be adapted to a wide range of bacteria, an innovation which will likely accelerate the development of potential drugs based on this principle.

Prof. Udi Qimron of the Department of Clinical Microbiology and Immunology at TAU's Sackler Faculty of Medicine led the research team, which also included Dr. Ido Yosef, Dr. Moran Goren, Rea Globus and Shahar Molshanski, all of Prof. Qimron's lab. The study was recently published in Molecular Cell and featured on its cover.

For the research, the team genetically engineered bacteriophages to contain the desired DNA rather than their own genome. They also designed combinations of nanoparticles from different bacteriophages, resulting in hybrids that are able to recognize new bacteria, including pathogenic bacteria. The researchers further used directed evolution to select hybrid particles able to transfer DNA with optimal efficiency.

"DNA manipulation of pathogens includes sensitization to antibiotics, killing of pathogens, disabling pathogens' virulence factors and more," Prof. Qimron said. "We've developed a technology that significantly expands DNA delivery into bacterial pathogens. This may indeed be a milestone, because it opens up many opportunities for DNA manipulations of bacteria that were impossible to accomplish before.

"This could pave the way to changing the human microbiome — the combined genetic material of the microorganisms in humans — by replacing virulent bacteria with a-virulent bacteria and replacing antibiotic-resistant bacteria with antibiotic-sensitive bacteria, as well as changing environmental pathogens," Prof. Qimron continued.

"We have applied for a patent on this technology and are developing products that would use this technology to deliver DNA into bacterial pathogens, rendering them a-virulent and sensitive to antibiotics," Prof. Qimron said.

###

The research has been granted $700,000 from the Momentum Fund, a unique $24,000,000 fund established by Ramot, Tel Aviv University's business engagement center. This funding enables the advanced development of this technology within TAU laboratories. The Momentum Fund invests in promising breakthrough technologies in a wide range of fields, including pharmaceuticals, healthcare, high-tech and the physical sciences. Tata Group is the lead investor of the Momentum Fund. Singapore-based Temaske is another key investor.

American Friends of Tel Aviv University (AFTAU) supports Israel's most influential, comprehensive and sought-after center of higher learning, Tel Aviv University (TAU). TAU is recognized and celebrated internationally for creating an innovative, entrepreneurial culture on campus that generates inventions, startups and economic development in Israel. For three years in a row, TAU ranked 9th in the world, and first in Israel, for alumni going on to become successful entrepreneurs backed by significant venture capital, a ranking that surpassed several Ivy League universities. To date, 2,400 patents have been filed out of the University, making TAU 29th in the world for patents among academic institutions.

Media Contact

George Hunka
[email protected]
212-742-9070
@AFTAUnews

Home

https://www.aftau.org/weblog-medicine–health?&storyid4704=2337&ncs4704=3

Related Journal Article

http://dx.doi.org/10.1016/j.molcel.2017.04.025

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Circuit Links Drive and Social Contact to Mate

September 4, 2025

Leadership Coaching Boosts Incident Reporting in Critical Care

September 4, 2025

AI-Driven Virtual Cells: Revolutionizing Cancer Research

September 4, 2025

Weight-Loss Drug Semaglutide Shows Promise in Reducing Cocaine Use in Rats, Paving the Way for Potential Pharmacological Treatment of Human Cocaine Addiction

September 4, 2025
Please login to join discussion

POPULAR NEWS

  • Needlestick Injury Rates in Nurses and Students in Pakistan

    297 shares
    Share 119 Tweet 74
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    143 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    118 shares
    Share 47 Tweet 30

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Circuit Links Drive and Social Contact to Mate

Leadership Coaching Boosts Incident Reporting in Critical Care

AI-Driven Virtual Cells: Revolutionizing Cancer Research

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.