• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

DNA computer brings ‘intelligent drugs’ a step closer

Bioengineer by Bioengineer
February 17, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers at Eindhoven University of Technology (TU/e) present a new method that should enable controlled drug delivery into the bloodstream using DNA computers. In the journal Nature Communications the team, led by biomedical engineer Maarten Merkx, describes how it has developed the first DNA computer capable of detecting several antibodies in the blood and performing subsequent calculations based on this input. This is an important step towards the development of smart, 'intelligent' drugs that may allow better control of the medication for rheumatism and Crohn's disease, for example, with fewer side-effects and at lower cost.

An analogy for the method presented by the TU/e researchers is a security system that opens the door depending on the person standing in front of it. If the camera recognizes the person, the door unlocks, but if the person is unknown, the door remains locked. "Research into diagnostic tests tends to focus on the 'recognition', but what is special about this system is that it can think and that it can be connected to actuation such as drug delivery," says professor of Biomedical Chemistry Maarten Merkx.

DNA computer

To be able to perform such an action, 'intelligence' is needed, a role that is performed in this system by a DNA computer. DNA is best known as a carrier of genetic information, but DNA molecules are also highly suitable for performing molecular calculations. The sequence within a DNA molecule determines with which other DNA molecules it can react, which allows a researcher to program desired reaction circuits.

Antibodies

To date biomedical applications of DNA computers have been limited because the input of DNA computers typically consists of other DNA and RNA molecules. To determine whether someone has a particular disease, it is essential to measure the concentration of specific antibodies – agents that our immune system produces when we are ill. Merkx and his colleagues are the first to have succeeded in linking the presence of antibodies to a DNA computer.

Drug delivery

Their method translates the presence of each antibody into a unique piece of DNA whereby the DNA computer can decide on the basis of the presence of one or more antibodies whether drug delivery, for example, is necessary. "The presence of a particular DNA molecule sets in motion a series of reactions whereby we can get the DNA computer to run various programs," explains PhD student and primary author Wouter Engelen. "Our results show that we can use the DNA computer to control the activity of enzymes, but we think it should also be possible to control the activity of a therapeutic antibody."

Medication

In treating chronic diseases like rheumatism or Crohn's disease, such therapeutic antibodies are used as medication. One of the potential applications of this system is to measure the quantity of therapeutic antibodies in the blood and decide whether it is necessary to administer any extra medication. Merkx: "By directly linking the measurement of antibodies to the treatment of the disease, we may be able to prevent side-effects and reduce costs in the future."

###

Media Contact

Maarten Merkx
[email protected]
31-040-247-4728
@TUEindhoven

http://www.tue.nl/en

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

February 7, 2026

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

February 7, 2026

Scientists Identify SARS-CoV-2 PLpro and RIPK1 Inhibitors Showing Potent Synergistic Antiviral Effects in Mouse COVID-19 Model

February 7, 2026

Neg-Entropy: The Key Therapeutic Target for Chronic Diseases

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

Scientists Identify SARS-CoV-2 PLpro and RIPK1 Inhibitors Showing Potent Synergistic Antiviral Effects in Mouse COVID-19 Model

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.