• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, December 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Diving into water treatment strategies for swimming pools

Bioengineer by Bioengineer
June 26, 2019
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

With summer in full swing, many people are cooling off in swimming pools. However, some of the substances that are made when chlorine in the water reacts with compounds in human sweat, urine or dirt aren’t so refreshing. Now, researchers have compared the effectiveness of different water treatment processes in mitigating these so-called disinfection byproducts (DBPs). They report their results in ACS’ journal Environmental Science & Technology.

Chlorine is usually added to pool water to kill harmful microbes. However, this disinfectant can react with substances in the pool water — many of which are introduced by swimmers themselves — to form DBPs, which can irritate the eyes, skin and lungs. Most pool systems continuously recirculate water through various treatment steps to both disinfect the water and reduce DBPs and their precursors. But because of the difficulty of comparing swimming pools with different conditions, such as number of swimmers, chlorine dosing or filling-water quality, scientists don’t currently know which strategy is the best. So, Bertram Skibinski, Wolfgang Uhl and colleagues wanted to compare several water treatment strategies under the controlled and reproducible conditions of a pilot-scale swimming pool system.

The researchers continuously added compounds to their model swimming pool that simulated dirt and body fluids and added chlorine according to regulations for full-scale pools. Then, they treated the water with one of seven water treatment strategies. They found that the treatment using coagulation and sand filtration combined with granular activated carbon filtration was the most effective at lowering DBP concentrations. But even this treatment did not completely remove the contaminants because new DBPs were made more quickly than the old ones could be removed. When UV irradiation was used as a treatment step, the levels of some DBPs increased because the UV light elevated the reactivity of organic matter toward chlorine. New strategies need to be explored to more effectively remove DBPs and prevent new ones from forming, the researchers say.

###

The authors acknowledge funding from the German Federal Ministry of Education and Research.

The abstract that accompanies this study is available here.

The American Chemical Society, the world’s largest scientific society, is a not-for-profit organization chartered by the U.S. Congress. ACS is a global leader in providing access to chemistry-related information and research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact [email protected].

Follow us on Twitter | Facebook

Media Contact
Katie Cottingham
[email protected]

Tags: Chemistry/Physics/Materials SciencesHydrology/Water ResourcesMicrobiologyPublic Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Cutting Electrolyte Reduction Boosts High-Energy Battery Performance

Cutting Electrolyte Reduction Boosts High-Energy Battery Performance

December 19, 2025
Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

December 11, 2025

Photoswitchable Olefins Enable Controlled Polymerization

December 11, 2025

Cation Hydration Entropy Controls Chloride Ion Diffusion

December 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    100 shares
    Share 40 Tweet 25
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    52 shares
    Share 21 Tweet 13
  • Nurses’ Views on Online Learning: Effects on Performance

    71 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Study Explores Medi-Cal Transition for Older Latinos

Maximizing T Count in Quantum Circuits with AlphaTensor

Creating Digital Twins for Robotic Chemistry Automation

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.