• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Divide and conquer pattern searching

Bioengineer by Bioengineer
December 28, 2016
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: © Mopic / Alamy Stock Photo DTFTEM

Searching for recurring patterns in network systems has become a fundamental part of research and discovery in fields as diverse as biology and social media. KAUST researchers have developed a pattern or graph-mining framework that promises to significantly speed up searches on massive network data sets.

"A graph is a data structure that models complex relationships among objects," explained Panagiotis Kalnis, leader of the research team from the KAUST Extreme Computing Research Center. "Graphs are widely used in many modern applications, including social networks, biological networks like protein-to-protein interactions, and communication networks like the internet."

In these applications, one of the most important operations is the process of finding recurring graphs that reveal how objects tend to connect to each other. The process, which is called frequent subgraph mining (FSM), is an essential building block of many knowledge extraction techniques in social studies, bioinformatics and image processing, as well as in security and fraud detection. However, graphs may contain hundreds of millions of objects and billions of relationships, which means that extracting recurring patterns places huge demands on time and computing resources.

"In essence, if we can provide a better algorithm, all the applications that depend on FSM will be able to perform deeper analysis on larger data in less time," Kalnis noted.

Kalnis and his colleagues developed a system called ScaleMine that offers a ten-fold acceleration compared with existing methods.

"FSM involves a vast number of graph operations, each of which is computationally expensive, so the only practical way to support FSM in large graphs is by massively parallel computation," he said.

In parallel computing, the graph search is divided into multiple tasks and each is run simultaneously on its own processor. If the tasks are too large, the entire search is held up by waiting for the slowest task to complete; if the tasks are too small, the extra communication needed to coordinate the parallelization becomes a significant additional computational load.

Kalnis' team overcame this limitation by performing the search in two steps: a first approximation step to determine the search space and the optimal division of tasks and a second computational step in which large tasks are split dynamically into the optimal number of subtasks. This resulted in search speeds up to ten times faster than previously possible.

"Hopefully this performance improvement will enable deeper and more accurate analysis of large graph data and the extraction of new knowledge," Kalnis said.

###

Media Contact

Michelle D'Antoni
[email protected]

http://kaust.edu.sa/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Groundbreaking Nanomedicine Eradicates Leukemia in Animal Trials

Groundbreaking Nanomedicine Eradicates Leukemia in Animal Trials

October 29, 2025
Six Early-Career Scientists Awarded AFAR Junior Faculty Grants

Six Early-Career Scientists Awarded AFAR Junior Faculty Grants

October 29, 2025

Targeted Vector Enables Brain Endothelial Gene Delivery

October 29, 2025

Reproducibility of Deep Learning in Cardiac MRI

October 29, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1289 shares
    Share 515 Tweet 322
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    311 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    199 shares
    Share 80 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    135 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Groundbreaking Nanomedicine Eradicates Leukemia in Animal Trials

Six Early-Career Scientists Awarded AFAR Junior Faculty Grants

Targeted Vector Enables Brain Endothelial Gene Delivery

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.