• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, July 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

DistME: A fast and elastic distributed matrix computation engine using GPUs

Bioengineer by Bioengineer
July 17, 2019
in Science
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

DistME: A fast and elastic distributed matrix computation engine using GPUs developed by DGIST

IMAGE

Credit: ?DGIST

DGIST announced on July 4 that Professor Min-Soo Kim’s team in the Department of Information and Communication Engineering developed the DistME (Distributed Matrix Engine) technology that can analyze 100 times more data 14 times faster than the existing technologies. This new technology is expected to be used in machine learning that needs big data processing or various industry fields to analyze large-scale data in the future.

‘Matrix’ data, which expresses numbers in row and column, is the most widely used form of data in various fields such as machine learning* and science technology. While ‘SystemML’ and ‘ScaLAPACK’ are evaluated as the most popular technologies to analyze matrix data, but the processing capability of existing technology has recently reached its limits with the growing size of data. It is especially difficult to conduct multiplications, which are required for data processing, for big data analysis with the existing methods because they cannot perform elastic analysis and processing and require a huge amount of network data transfer for processing.

In response, Professor Kim’s team developed a distributed matrix multiplication method that is different from the existing one. Also called CuboidMM, this method forms matrix multiplication in a 3D hexahedron and then partitions and processes to multiple pieces called cuboid. The optimal size of the cuboid is flexibly determined depending on the characteristics of the matrices, i.e., the size, the dimension, and sparsity of matrix, so as to minimize the communication cost. CuboidMM not only includes all the existing methods but also can perform matrix multiplication with minimum communication cost. In addition, Professor Kim’s team devised an information processing technology by combining with GPU (Graphics Processing Unit) which dramatically enhanced the performance of matrix multiplication.

The DistME technology developed by Professor Kim’s team has increased processing speed by combining CuboidMM with GPU, which is 6.5 and 14 times faster than ScaLAPACK and SystemML respectively and can analyze 100 times larger matrix data than SystemML. It is expected to open new applicability of machine learning in various areas that need large-scale data processing including online shopping malls and SNS.

Professor Kim in the Department of Information and Communication Engineering said ‘Machine Learning Technology, which has been drawing worldwide attention, has limitations in the speed for matrix-form big data analysis and the size of analysis processing. The information processing technology developed this time can overcome such limitations and will be useful in not only machine learning but also applications in wider ranges of science technology data analysis application.”

This research was participated by Donghyoung Han, a Ph.D. student in the Department of Information and Communication Engineering as the first author and was presented on July 3 in ACM SIGMOD 2019, the top-renowned academic conference in the database field held in Amsterdam, Netherlands.

* Machine Learning: A computer program that improves information processing ability through learning using data and processing experience and a related research field.

###

Media Contact
Min-Soo Kim
[email protected]

Original Source

https://www.dgist.ac.kr/en/html/sub06/060202.html?mode=V&no=384214f465479b9beb2586945a7dfdba

Related Journal Article

http://dx.doi.org/10.1145/3299869.3319865

Tags: Multimedia/Networking/Interface DesignSoftware EngineeringSystem Security/HackersTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    57 shares
    Share 23 Tweet 14
  • New Organic Photoredox Catalysis System Boosts Efficiency, Drawing Inspiration from Photosynthesis

    54 shares
    Share 22 Tweet 14
  • Enhancing Broiler Growth: Mannanase Boosts Performance with Reduced Soy and Energy

    73 shares
    Share 29 Tweet 18
  • IIT Researchers Unveil Flying Humanoid Robot: A Breakthrough in Robotics

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.