• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Discovery shines light on the mystery of cell death in MS

Bioengineer by Bioengineer
June 12, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Melissa Fabrizio

Researchers at the University of Alberta have discovered a unique process of brain cell death that affects the cells that are most vulnerable in multiple sclerosis (MS).

After identifying the process called pyroptosis, or fiery death, the researchers were able to block the enzyme in the brain that is responsible for it, using a drug that could potentially treat MS.

"This could be a game changer, because we discovered a fundamental mechanism by which brain cells are damaged in MS that couples inflammation with neurodegeneration," said Chris Power, a neurologist, lead author of the study and co-director of the UAlberta MS Centre. "The drug is already known to be safe in humans."

MS is a common disease of the brain and spinal cord that affects people in the prime of their life. There is currently no curative treatment for MS and its cause remains unknown. On average, 11 people with MS are diagnosed daily and Alberta has one of the highest rates of the disease in the world.

The publication of the study in PNAS marks the first molecular analysis of pyroptosis in the human brain. Pyroptosis is a type of programmed cell death that is associated with inflammation, but its role in MS was previously unknown. Importantly, Power's lab was able to show pyroptosis in both brain tissues from MS patients and in lab models of MS.

"The study's findings make a key contribution to the MS field in identifying a novel mechanism that contributes to progression in MS," said Karen Lee, vice president of research at the MS Society of Canada. "The MS Society of Canada is encouraged by the results of this study and what it means for people living with MS–hope for another avenue through which treatment options can be explored to stop MS in its tracks."

Power's lab found that the drug known as VX-765 protected oligodendrocytes, the cells that insulate nerves in the brain and are susceptible to damage in MS. VX-765 is currently in clinical trials for epilepsy.

"We think this drug would break the cycle of neurotoxic inflammation and thus prevent future loss of brain cell in MS," said Brienne McKenzie, first author on the study and a PhD student in the U of A's Faculty of Medicine & Dentistry.

Power and his team believe identifying this mechanism also opens the doors to new indicators for monitoring disease progression of MS, which has been challenging since symptoms can vary widely between patients.

"Existing MS treatments work to reduce inflammation, but there is nothing that targets the brain cells themselves," said Avindra Nath, clinical director of the National Institute of Neurological Disorder and Stroke at the National Institutes of Health in Bethesda, MD. "This paper identifies a clinically relevant novel pathway that opens the doors to new therapeutic targets that prevent cell damage."

The study was a collaboration with a laboratory at the National Institutes of Health in Washington, DC. The MS Society of Canada and the University Hospital Foundation provided funding support for the research.

"The University Hospital Foundation is proud to be a long-time supporter of Dr. Power's groundbreaking research. Along with our generous donors, I congratulate Dr. Power on his discovery, and look forward to his future success," said Joyce Mallman Law, president of the University Hospital Foundation.

###

The study Caspase-1 inhibition prevents glial inflammasome activation and pyroptosis in models of multiple sclerosis was published in PNAS on June 12, 2018.

Media Contact

Shelby Soke
[email protected]
403-988-4730
@ualberta_fomd

http://www.med.ualberta.ca

Related Journal Article

http://dx.doi.org/10.1073/pnas.1722041115

Share18Tweet8Share2ShareShareShare2

Related Posts

Access and Need Influence COPD Care Decisions

September 16, 2025

Timeless Discoveries: Science That Endures Through Ages

September 16, 2025

Delta-Type Glutamate Receptors: Ligand-Gated Ion Channels

September 16, 2025

Shunt Surgery Improves Outcomes for Older Adults with Hydrocephalus

September 16, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Food-Environment Links in Catchment Models

PPARγ Drives OSCC Growth Through Th17 and CEBPA

Access and Need Influence COPD Care Decisions

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.