• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Discovery of peripheral neuropathy cause suggests potential preventive measures

Bioengineer by Bioengineer
October 11, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In discovering how certain chemotherapy drugs cause the nerve damage known as peripheral neuropathy, researchers at Dana-Farber Cancer Institute have found a potential approach to preventing this common and troublesome side effect of cancer treatment.

The symptoms of peripheral neuropathy, which affects about one-third of patients receiving chemotherapy, include numbness, tingling, and pain in the hands and feet. Some patients get better after treatment ends, but in others the symptoms are long-lasting. There is currently no preventive or treatment for peripheral neuropathy, which is caused by the degeneration of the long, spindly nerve cell projections called axons that transmit physical sensations to the brain.

Unlike the brain, which is protected by a physical barrier from many harmful chemicals, nerve axons – which can extend as long as two or three feet in humans — are exposed to substances that flow through the blood circulation. The new report in the journal Neuron reveals for the first time precisely how taxanes, a class of commonly used chemotherapy drugs, trigger a dying off of sensory axons. With this knowledge, it might someday be possible, the investigators say, to give patients a drug prior to chemotherapy treatment that would reduce or prevent neuropathy symptoms. Taxane drugs are routinely used in treating early-stage breast cancer, and some other cancer types.

Researchers led by Rosalind Segal, MD, PhD, discovered that a protein called Bclw plays a unique braking role in preventing the degeneration of nerve axons. Bclw blocks the action of another protein that sets off a cascade of chemical reactions ending in nerve cell death. Segal says that Bclw is part of a regulatory system that allows unnecessary nerves to be "pruned" or killed off during embryonic development. During adult life, Bclw protects nerves from degeneration – except in the case of a traumatic injury or, in cancer treatment, exposure to chemotherapy drugs.

The gene carrying the blueprint for Bclw is located in the nucleus of the nerve cell. A carrier protein, SFPQ, transports copies of the Bclw blueprint in the form of messenger RNA along the nerve axon, where the protective Bclw protein is manufactured.

Segal and her colleagues found that adding a taxane drug, paclitaxel, to sensory nerve axons in the laboratory dramatically impeded the transport of Bclw messenger RNA by the SFPQ protein. As a result, too little of the Bclw protein was made to protect the axons, and they degenerated.

This finding led the investigators to ask if adding Bclw protein to the nerve axons before exposing them to paclitaxel would prevent the nerves from dying off — and it did. Moreover, they demonstrated that a synthetic compound based on a part of the Bclw protein – a so-called "stapled peptide" made in the laboratory of DFCI researcher Loren Walensky, MD, — was able to prevent degeneration from exposure to paclitaxel. This "designer peptide provides a promising template for drugs that can prevent chemotherapy-induced peripheral neuropathy," say the scientists.

Such drugs aren't likely to become available any time soon, but Segal says having discovered the mechanism that causes peripheral neuropathy in patients treated with taxane chemotherapy might be valuable in other ways. "One possibility is that you might be able to predict which patients will develop peripheral neuropathy based on whether they have higher or lower levels of Bclw based on their genetic background."

###

First authors of the study are Sarah E. Pease-Raissi, PhD, and Maria F. Pazyra-Murphy of Dana-Farber.

The research was supported by National Institutes of Health grants R01 NS050674 and R01 CA 205255 and by an award from the Barr Weaver program.

Media Contact

Ellen Berlin
[email protected]
617-632-4090
@DanaFarber

http://www.dfci.harvard.edu

Share12Tweet7Share2ShareShareShare1

Related Posts

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

February 7, 2026

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

February 7, 2026

Scientists Identify SARS-CoV-2 PLpro and RIPK1 Inhibitors Showing Potent Synergistic Antiviral Effects in Mouse COVID-19 Model

February 7, 2026

Neg-Entropy: The Key Therapeutic Target for Chronic Diseases

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

Scientists Identify SARS-CoV-2 PLpro and RIPK1 Inhibitors Showing Potent Synergistic Antiviral Effects in Mouse COVID-19 Model

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.