• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Discovery of new ecosystem – ‘The Trapping Zone’ – creating oasis of life in the Maldives

Bioengineer by Bioengineer
October 21, 2022
in Biology
Reading Time: 5 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The Nekton Maldives Mission, involving researchers from the University of Oxford, has found evidence of a previously undescribed ecosystem – ‘The Trapping Zone’ – that is creating an oasis of life 500 metres down in the depths of the Indian Ocean. The discovery has been hailed as highly significant by the Maldives Government.

Bramble Shark

Credit: Nekton Maldives Mission (c) Nekton 2022

The Nekton Maldives Mission, involving researchers from the University of Oxford, has found evidence of a previously undescribed ecosystem – ‘The Trapping Zone’ – that is creating an oasis of life 500 metres down in the depths of the Indian Ocean. The discovery has been hailed as highly significant by the Maldives Government.

Video evidence from Nekton science cameras aboard the Omega Seamaster II submersible, combined with collected biological samples and extensive sonar mapping, indicate that in this zone predators such as sharks and other large fish feed on swarms of small organisms known as micro-nekton. These are marine organisms that can swim independently of the current and typically migrate from the deep sea to the surface at night and dive back into the deep at dawn (known as The Vertical Migration). But in this area, the micro-nekton become trapped against the subsea landscape at the 500m mark.

The volcanic subsea strata and fossilised carbonate reefs which form the base of Maldivian atolls combine steep vertical cliffs and shelving terraces. These appear to be the reason that these species are prevented from diving any deeper as the sun rises. The trapped animals are then targeted by large pelagic predators, including schools of tuna and sharks, along with well-known, large deep-water fish including the spiky oreo (named after the biscuit) and alfonsino. Tiger sharks, gill sharks, sand tiger sharks, dog fish, gulper sharks, scalloped hammerhead sharks, silky sharks and the very rare bramble shark were all documented by the mission.

Marine ecosystems are defined by both the topography and ocean life. ‘This has all the hallmarks of a distinct new ecosystem’, explained Professor Alex Rogers (University of Oxford) who has spent over 30 hours underwater in the mission’s submersibles observing ‘The Trapping Zone’ during the expedition. ‘The Trapping Zone is creating an oasis of life in the Maldives and it is highly likely to exist in other oceanic islands and also on the slopes of continents.’

Lucy Woodall, Associate Professor of Marine Biology at the University of Oxford and Principal Scientist at Nekton, said: ‘We’re particularly intrigued at this depth – why is this occurring? Is this something that’s specific at 500 metres, does this life go even deeper, what is this transition, what is there and why? That’s our critical question we need to ask next. Why are we seeing the patterns that we have observed on this expedition? This will enable us to understand the deep ocean in much better terms.’

Whilst a trapping effect has been associated with biodiversity hotspots on subsea mountains or seamounts, it has not previously been linked to the different geomorphology and biological parameters of oceanic islands, like the Maldives.

Analysis of the video and biological data is ongoing in the Maldives, Nekton’s UK headquarters in Oxford, and at partner laboratories. The discovery could have important implications for other oceanic islands and the slopes of continents, sustainable fisheries management, the burial and storage of carbon and, ultimately, climate change mitigation.

President of the Maldives H.E Ibrahim Mohamed Solih, said: ‘The discovery of ‘The Trapping Zone’ and the oasis of life in the depths surrounding the Maldives provides us with critical new knowledge that further supports our conservation commitments and sustainable ocean management, and almost certainly support fisheries and tourism.’

The Nekton Maldives Mission is coordinated and managed by Nekton, a not-for-profit research institute based at Begbroke Science Park in Oxford. The mission is a partnership between the Government of Maldives, Nekton, and the University of Oxford alongside a dozen organisations in the Maldives and an international alliance of technology, philanthropy, media and scientific partners. The purpose is to conduct the first systematic survey of ocean life in the Maldives, from the surface to 1000 metres deep, to help inform conservation and sustainable development policies. Until the mission, almost nothing was known about what lay below 30 metres deep in this region.

Oliver Steeds, Chief Executive and Mission Director of Nekton, said: ‘The Maldives Mission has been co-created and co-produced with our Maldivian colleagues to meet national priorities with all data and biological samples owned and vested with the Maldives. Nekton’s scientific leadership is anchored by our research team from the University of Oxford and it’s this scientific collaboration between the Maldives and Oxford that is at the heart of the mission’s success and long-term impact.’

The mission set sail on September 4 and was at sea for 34 days. Other discoveries from the mission so far include:

Ancient beach lines: Terracing and wave erosion at depths of 122m, 101m, 94m, 84m and 55m revealed evidence of different beach lines from sea level rise over the last 20,000 years since the end of the last glacial maximum.

Coral Reefs: The mission systematically mapped, surveyed, determined location, health, and resilience of coral reefs in six major locations to inform the Maldives Government’s conservation and management policies. The reefs are essential to life in the Maldives and help reduce the impacts from sea level rise and the increasing frequency and intensity of storms caused by climate change.

A deep-sea refuge: At depths from 120 metres to 300 metres, the team systematically surveyed the Rariphotic Zone for the first time in Maldives — home to corals, reefs and organisms, some of which are highly likely to be species new to science.

Notes to editors:

Further information about the mission can be found on Nekton’s website: https://nektonmission.org/missions/maldives

A video summary of the Nekton Maldives Mission’s discovery of the Trapping Zone can be viewed on YouTube: https://www.youtube.com/watch?v=6EiJ5ZXjDhY

For interview requests with University of Oxford researchers involved in the Nekton Maldives Mission, contact Dr Caroline Wood, University of Oxford: [email protected]

For media enquiries related to Nekton, contact Lisa Hynes: [email protected]

About the University of Oxford

 Oxford University has been placed number 1 in the Times Higher Education World University Rankings for the seventh year running, and ​number 2 in the QS World Rankings 2022. At the heart of this success are the twin-pillars of our ground-breaking research and innovation and our distinctive educational offer.

Oxford is world-famous for research and teaching excellence and home to some of the most talented people from across the globe. Our work helps the lives of millions, solving real-world problems through a huge network of partnerships and collaborations. The breadth and interdisciplinary nature of our research alongside our personalised approach to teaching sparks imaginative and inventive insights and solutions.

Through its research commercialisation arm, Oxford University Innovation, Oxford is the highest university patent filer in the UK and is ranked first in the UK for university spinouts, having created more than 200 new companies since 1988. Over a third of these companies have been created in the past three years. The university is a catalyst for prosperity in Oxfordshire and the United Kingdom, contributing £15.7 billion to the UK economy in 2018/19, and supports more than 28,000 full time jobs.

 



Share13Tweet8Share2ShareShareShare2

Related Posts

Ferroptosis Links to Acute Kidney Disease Genes

Ferroptosis Links to Acute Kidney Disease Genes

August 28, 2025
Red Beet Gene Boosts Tuber Growth and Disease Resistance

Red Beet Gene Boosts Tuber Growth and Disease Resistance

August 28, 2025

VHL Inhibits Angiogenesis via HIF-1a in Macrophages

August 28, 2025

Trainer Insights on Canine Aggression and Behavior Solutions

August 27, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Amygdala Noise Boosts Exploration During Threat

AI Unveils IVIG-Resistant Kawasaki Disease in Shandong

Challenges in AI-Driven Virtual Cells for Cancer Research

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.