• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, November 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Discovery of immune cells able to defend against mutating viruses could transform vaccine developmen

Bioengineer by Bioengineer
April 30, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists have found immune cells can fight different strains of the same virus – a discovery which could help transform vaccine development.

Vaccines become ineffective when a virus mutates, and tackling this problem is a priority for researchers. Vaccinations aim to stimulate the body to produce "memory" cells which provide long-lasting protection from disease. Until now it was thought that these cells could only remember – and be able to protect against – one particular strain of virus.

Researchers have now found the immune system can produce memory cells which have the ability to recognise different strains of the same virus, rather than just one. This could help scientists transform the way vaccines are produced and given.

Diseases such as influenza, Dengue fever and AIDS are caused by viruses which constantly mutate, allowing them to hide from the immune system and evade any response from their host. Current vaccines can provide good protection against particular strains of virus but fail to protect against new strains caused by genetic mutation. For this reason the influenza vaccine, for example, has to be updated and administered annually, often with limited success, to pre-empt the appearance of new variant viruses.

Dr Harry White, from the University of Exeter, who led the Wellcome Trust-funded research, said: "Trying to find vaccines which can protect people against different strains of virus is a focus for scientists around the world. So far, despite a large global effort, there has been limited success in the war against virus mutation.

"We have found the immune system is able to recognise threats from new strains of a virus. We have long known of the existence of different types of immune memory cells, and now we know what these differences mean.

"After exposure to one strain of virus, these memory cells are then better able to recognise variants of the virus if they encounter them in the future. The immune system learns to protect against a whole group of related viruses, not just the one it experienced. It is this property that needs to be exploited to help make broadly protective vaccines."

The memory cells examined in this study are immature, or less developed, which allows them to more easily change and adapt to fight different viral strains. The antibodies from these cells are less focused on the infecting virus, but this is an advantage if the virus has mutated.

The research involved academics from the University of Exeter, University of Bristol and University of Birmingham testing the reaction of mice vaccinated with proteins from different strains of virus. Through painstakingly isolating hundreds of different individual cells and analysing the different antibodies each one made they were able to detect the presence of the immature cells that made these less focused antibodies. The mice which were immunised sequentially with proteins from different strains of the same virus produced more of these less developed memory cells.

Professor Rick Titball said "The holy grail for many scientists is to find a way of developing vaccines which work against all strains of a microorganism. This work could bring us a step closer to this and avoid, for example, the need to develop a new flu vaccine each year"

Variant proteins stimulate more IgM+ GC B-cells revealing a mechanism of cross-reactive recognition by antibody memory is published in the journal eLife.

###

Media Contact

Kerra Maddern
[email protected]
01-392-722-062
@uniofexeter

http://www.exeter.ac.uk

Share12Tweet7Share2ShareShareShare1

Related Posts

Assessing Social Anxiety in Autism: A Multi-Method Approach

November 9, 2025

Impact of Patient Variability on Vascular Tissue Engineering

November 9, 2025

Texas Transitional Dialysis Program Significantly Reduces Emergency Dialysis Usage

November 8, 2025

New Study Reveals Global Trends in Acute Kidney Injury-Related Mortality

November 8, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    314 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    207 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    139 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1302 shares
    Share 520 Tweet 325

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Assessing Social Anxiety in Autism: A Multi-Method Approach

Impact of Patient Variability on Vascular Tissue Engineering

Texas Transitional Dialysis Program Significantly Reduces Emergency Dialysis Usage

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.