• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Discovery of human blood cell destinies revises knowledge of immune cell development

Bioengineer by Bioengineer
June 13, 2017
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Department of Biodefense Research, Medical Research Institute,TMDU

Tokyo Medical and Dental University(TMDU) researchers identify human stem cell descendants destined to become monocytes, updating our understanding of blood cell development and paving the way for potential therapeutic discoveries

Tokyo, Japan — Immune cells protect their host from infection by pathogens. They include monocytes, which are large white blood cells that can differentiate into scavenger cells macrophages and dendritic cells in response to inflammatory signals. Monocytes are derived from blood stem cells in the bone marrow via an intermediate cell type, the progenitor cell, which is slightly more differentiated than stem cells. Previous research identified a common monocyte progenitor cell (cMoP) in mice that only develops into monocytes. Now, Tokyo Medical and Dental University(TMDU) has identified equivalent monocyte progenitors in humans. This expands what we know about the differentiation process of monocytes and opens up possible therapeutic applications targeting these cells.

Monocytes, macrophages, and dendritic cells express different proteins on their cell surface. The team screened these proteins to identify two (CLEC12A and CD64) that could be used as markers depending on high and low levels of expression. Human umbilical cord blood was then used as a source of a progenitor cell type of monocytes and granulocytes. The team divided this cell population into four subgroups according to the marker expression levels.

One of these subgroups was a population of cells expressing high levels of both CLEC12A and CD64. Growing small colonies of cells in the lab, the researchers showed that this subgroup only developed into monocytes, indicating that they were equivalent to the mouse cMoPs identified previously. Another subpopulation expressing high level of CLEC12A and intermediate level of CD64 could differentiate only into granulocytes and monocytes, while the remaining subgroups lacking CD64 expression could generate dendritic cells. This indicates that the original progenitor contained a mixture of cell types.

Human and mouse cMoPs were shown to share the expression of a number of genes that are typical of progenitor rather than mature cells, and the gene expression characteristics of monocytes 'monocyte signature' was also more evident as cell types became more committed into differentiating into monocytes. "Focusing on the expression level and pattern of cell surface proteins, we observed a sequential differentiation process from granulocyte/monocyte progenitors via cMoPs to pre-monocytes then monocytes that was supported by gene expression studies," corresponding author Toshiaki Ohteki says. "This updates what we know about the human blood cell developmental pathway."

As monocytes give rise to tumor-associated macrophages (TAM), osteoclasts, and colitogenic macrophages, this finding might shed light also on possible therapeutic applications targeting cMoPs and monocytes.

###

The work has been published as "Identification of a human clonogenic progenitor with strict monocyte differentiation potential — a counterpart of mouse cMoPs".

Media Contact

Toshiaki OHTEKI
[email protected]

http://www.tmd.ac.jp/english/

Original Source

http://www.tmd.ac.jp/english/press-release/20170613/index.html http://dx.doi.org/10.1016/j.immuni.2017.04.019

############

Story Source: Materials provided by Scienmag

Share15Tweet8Share2ShareShareShare2

Related Posts

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

February 7, 2026

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

February 7, 2026

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

February 7, 2026

Scientists Identify SARS-CoV-2 PLpro and RIPK1 Inhibitors Showing Potent Synergistic Antiviral Effects in Mouse COVID-19 Model

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.