• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, July 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Discovery of dynamic seasonal changes in color perception

Bioengineer by Bioengineer
September 5, 2017
in Biology
Reading Time: 2 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: NIBB

In many areas, the environment fluctuates greatly depending on the season, and animals living in those areas must adapt to the changing environment. A research group from the National Institute for Basic Biology and Nagoya University in Japan found that color perception of Medaka, a small fish inhabiting rice fields and streams, varies greatly according to seasonal changes.

From spring to summer, medaka breed and are very active. They stop breeding in the autumn, and in the winter, eat almost no food and keep still at the bottom of the water column. In order to investigate seasonal differences in behavior, the research group examined medaka under simulated summer and winter conditions in the lab. Dr. Shimmura of NIBB said, "we compared the behavior of medaka in summer and winter and discovered differences, not only in the amount of activity they displayed in summer and winter, but also in their response to light. In summer conditions, medaka escape from light, but in winter conditions, their response to light decreases."

During the spring and summer, Medaka body color changes and becomes brilliant in a show of nuptial coloration. Using computer graphics, the research group displayed virtual medaka to real live medaka in order to examine their response to nuptial coloration. The research group was able to selectively evaluate this response to medaka body color. Medaka in the summer condition were strongly attracted to virtual medaka which showed nuptial coloration, but medaka in the winter condition were not. This suggests that the perception of nuptial coloration varies from season to season.

In addition, researchers used medaka transferred from winter to summer conditions to examine how gene expression in the eye changes. As a result, it became clear that expression of opsins, the proteins responsible for the first step in vision, and genes related to signal transduction pathways downstream of opsins are markedly reduced in winter conditions, whereas expression of these genes rises by shifting to summer conditions. Furthermore, it was confirmed that in medaka lacking red opsins, the responsiveness to light and the preference for nuptial coloration in mates both decreased.

Professor Yoshimura, the leader of this research, said, "since medaka consume hardly any food during winter, it is thought that they save energy by suppressing the expression of various genes, including opsins. Also, from spring to summer, medaka develop nuptial coloration to attract the opposite sex. We predict that significantly enhancing light sensitivity and color perception during the breeding season increases the breeding success rate in medaka". Previous studies have also reported that human color perception changes according to the season. This phenomenon of seasonal change in color perception is therefore not limited to medaka and may be a phenomenon widely preserved in various animals.

###

The article "Dynamic plasticity in phototransduction regulates seasonal changes in color perception" was published in Nature Communications. http://dx.doi.org/10.1038/s41467-017-00432-8

Authors: Tsuyoshi Shimmura, Tomoya Nakayama, Ai Shinomiya, Shoji Fukamachi, Masaki Yasugi, Eiji Watanabe, Takayuki Shimo, Takumi Senga, Toshiya Nishimura, Minoru Tanaka, Yasuhiro Kamei, Kiyoshi Naruse, Takashi Yoshimura

National Institute for Basic Biology

Nagoya University

Media Contact

NIBB Office of PR
[email protected]

http://www.nins.jp/english/

Related Journal Article

http://dx.doi.org/10.1038/s41467-017-00432-8

Share12Tweet8Share2ShareShareShare2

Related Posts

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

July 20, 2025
blank

Archaeal Ribosome Shows Unique Active Site, Hibernation Factor

July 17, 2025

Mobile Gene Regulator Balances Arabidopsis Shoot-Root Growth

July 16, 2025

Mobile Transcription Factor Drives Nitrogen Deficiency Response

July 16, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    57 shares
    Share 23 Tweet 14
  • New Organic Photoredox Catalysis System Boosts Efficiency, Drawing Inspiration from Photosynthesis

    54 shares
    Share 22 Tweet 14
  • Enhancing Broiler Growth: Mannanase Boosts Performance with Reduced Soy and Energy

    73 shares
    Share 29 Tweet 18
  • IIT Researchers Unveil Flying Humanoid Robot: A Breakthrough in Robotics

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.