• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Discovery of brain-like activity in immune system promises better disease treatments

Bioengineer by Bioengineer
July 12, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The Australian National University (ANU) has led the discovery of brain-like activity in the immune system that promises better treatments for lymphoma, autoimmune diseases and immunodeficiency disorders, which collectively affect millions of people globally.

Lead researcher Ilenia Papa from ANU said the research confirmed for the first time that human immune cells contain particles that have neurotransmitters including dopamine, which plays a crucial role in immune responses.

"These particles were previously thought to only exist in neurons in the brain and we think they are, potentially, an excellent target for therapies to speed up or dampen the body's immune response, depending on the disease you're dealing with," said Ms Papa, a PhD scholar at The John Curtin School of Medical Research (JCSMR), ANU.

Neurons rely on synaptic interactions and neurotransmitters such as dopamine, which are small molecules transmitted across synapses to deliver signals from one cell to another that play a major role in reward-motivated behaviour.

"Like neurons, specialised T cells transfer dopamine to B cells that provides additional 'motivation' for B cells to produce the best antibodies they can to help to clear up an infection," Ms Papa said.

"The human body has developed an advanced form of protection against bacteria, viruses and other foreign bodies that relies on the immune system.

"Immune responses are essential for recognising and defending humans against substances that appear foreign and harmful to the individual."

The research, published in Nature, involved a collaboration with members of a Human Frontier Science Program consortium from the United Kingdom, the United States and Germany, and with other researchers in Italy.

Co-researcher Professor Carola Vinuesa from JCSMR said the new findings opened the door to using available drugs to improve therapies for lymphoma, autoimmunity and immunodeficiency disorders.

"We hope to use these findings to make the immune response to vaccines and infections faster and more productive, and slower and less active for autoimmune conditions where the body attacks itself," Professor Vinuesa said.

The researchers analysed around 200 tissue samples from children who had their tonsils removed, observing the transfer of dopamine from specialised T cells to B cells through a synaptic interaction.

They also worked with a mathematician to model the immune system's brain-like activity in a human in response to vaccines.

###

Media Contact

Kate Prestt
[email protected]
61-261-257-979
@ANUmedia

http://www.anu.edu.au/media

http://dx.doi.org/10.1038/nature23013

Share12Tweet8Share2ShareShareShare2

Related Posts

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

February 7, 2026

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

February 7, 2026

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

February 7, 2026

Scientists Identify SARS-CoV-2 PLpro and RIPK1 Inhibitors Showing Potent Synergistic Antiviral Effects in Mouse COVID-19 Model

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.