• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Discovery of a source of fast magnetic reconnection

Bioengineer by Bioengineer
March 31, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Elle Starkman/PPPL Office of Communications

Magnetic reconnection, a universal process that triggers solar flares and northern lights and can disrupt cell phone service and fusion experiments, occurs much faster than theory says that it should. Now researchers at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) and Germany's Max Planck Institute of Plasma Physics have discovered a source of the speed-up in a common form of reconnection. Their findings could lead to more accurate predictions of damaging space weather and improved fusion experiments.

Reconnection occurs when the magnetic field lines in plasma — the collection of atoms and charged electrons and atomic nuclei, or ions, that make up 99 percent of the visible universe — converge and forcefully snap apart. Electrons that exert a varying degree of pressure form an important part of this process as reconnection takes place.

The research team found that variation in the electron pressure develops along the magnetic field lines in the region undergoing reconnection. This variation balances and keeps a strong electric current inside the plasma from growing out of control and halting the reconnection process. It is this balancing act that makes possible fast reconnection.

"The main issue we addressed is how reconnection can take place so quickly," said Will Fox, lead author of a paper that detailed the findings in March in the journal Physical Review Letters. "Here we've shown experimentally how electron pressure accelerates the process."

The physics team built a picture of the gradient and other parameters of reconnection from research conducted on the Magnetic Reconnection Experiment (MRX) at PPPL, the leading laboratory device for studying reconnection. The findings marked the first experimental confirmation of predictions made by earlier simulations performed by other researchers of the behavior of ions and electrons during reconnection. "The experiments demonstrate how the plasma can sustain a large electric field while preventing a large electric current from building up and halting the reconnection process," said Fox.

Among potential applications of the results:

  • Predictions of space storms. Magnetic reconnection in the magnetosphere, the magnetic field that surrounds the Earth, can set off geomagnetic "substorms" that disable communications and global positioning satellites (GPS) and disrupt electrical grids. Improved understanding of fast reconnection can help locate regions where the process triggering storms is ready to take place.
  • Mitigation of the impact. Advanced warning of reconnection and the disruptions that may follow can lead to steps to protect sensitive satellite systems and electric grids.
  • Improvement of fusion facility performance. The process observed in MRX likely plays a key role in producing what are called "sawtooth" instabilities that can halt fusion reactions. Understanding the process could open the door to controlling it and limiting such instabilities. "How sawtooth happens so fast has been a mystery that this research helps to explain," said Fox. "In fact, it was computer simulations of sawtooth crashes that first linked electron pressure to the source of fast reconnection."

###

Support for this work comes from the DOE Office of Fusion Science and the Max Planck-Princeton Center for Plasma Physics.

PPPL, on Princeton University's Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas — the collection of atoms and charged electrons and atomic nuclei, or ions, that make up 99 percent of the visible universe — and to developing practical solutions for the creation of fusion energy. The Laboratory is managed by the University for the U.S. Department of Energy's Office of Science, which is the largest single supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Media Contact

John Greenwald
[email protected]
609-243-2672
@PPPLab

http://www.pppl.gov

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Children’s Cardiomyopathies: MRI Insights from Experts

November 6, 2025
Alien Nudibranch: Scyphozoan Predation and Nematocyst Dynamics

Alien Nudibranch: Scyphozoan Predation and Nematocyst Dynamics

November 6, 2025

Unraveling Causes and Solutions for Same-Day Surgery Cancellations

November 6, 2025

Black Soldier Fly Larvae: Innovations in Sustainable Waste Management

November 6, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1299 shares
    Share 519 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Children’s Cardiomyopathies: MRI Insights from Experts

Alien Nudibranch: Scyphozoan Predation and Nematocyst Dynamics

Unraveling Causes and Solutions for Same-Day Surgery Cancellations

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 68 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.