• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Discovery of a new topological phase could lead to exciting developments in nanotechnology

Bioengineer by Bioengineer
March 29, 2023
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Two-dimensional materials such as graphene have served as a playground for the experimental discovery and theoretical understanding of a wide range of phenomena in physics and materials science. Beyond graphene, there are a large number 2D materials, all with different physical properties. This is promising for potential applications in nanotechnology, where a wide range of functionality can be achieved in devices by using different 2D materials or stacking combinations of different layers.

Illustration of merons in a twisted bilayer.

Credit: Daniel Bennett

Cambridge researchers have discovered a new topological phase in a two-dimensional system, which could be used as a new platform for exploring topological physics in nanoscale devices.

Two-dimensional materials such as graphene have served as a playground for the experimental discovery and theoretical understanding of a wide range of phenomena in physics and materials science. Beyond graphene, there are a large number 2D materials, all with different physical properties. This is promising for potential applications in nanotechnology, where a wide range of functionality can be achieved in devices by using different 2D materials or stacking combinations of different layers.

It was recently discovered that in materials such as hexagonal boron nitride (hBN), which are less symmetric than graphene, ferroelectricity occurs when one layer slides over the other and breaks a symmetry. Ferroelectricity is the switching of a material’s electric dipole moment with an electric field, which is a useful property for information processing and memory storage. When 2D materials are twisted with respect to one another, they form a beautiful interference pattern known as a moiré superlattice, which can radically change the physical properties. When hBN and similar materials are twisted the different stacking regions become polarised, leading to a regular network of polar domains, which have also been shown to lead to ferroelectricity.

In this new study reported in Nature Communications, researchers from Cambridge’s Cavendish Laboratory and the University of Liège, Belgium, have discovered that there is more to these polar domains that everyone is studying: they are inherently topological and form objects known as merons and antimerons.

“The polarisation in twisted systems points in the out-of-plane direction, that is to say perpendicular to the layers,” said first author Dr Daniel Bennett, who started this project at the Cavendish Laboratory and is now based at Harvard University, USA.

“What we found is that the symmetry breaking caused by sliding or twisting also results in an in-plane polarisation which is similar in strength to the out-of-plane polarisation. The in-plane polarisation forms a beautiful vector field, and its shape is determined entirely by the symmetry of the layers.”

The discovery of the in-plane polarisation shows that the electrical properties of 2D twisted systems are much more complex than previously thought. More importantly, combining both the in-plane and out-of-plane parts of the polarisation, the team realised that the polarisation in these twisted bilayers is topologically non-trivial.

“In each domain, the polarisation field winds around by half a revolution, forming a topological object known as a meron (half a skyrmion),” said Dr Robert-Jan Slager, whose group at the Cavendish Laboratory was involved in the study. “Throughout the twisted layer, a robust network of merons and antimerons forms.”

“In physics, most things can be understood in terms of energy,” said Bennett. “Nature is lazy and likes to do things in the most efficient way possible, doing so by minimising the energy of a system.”

The phase that a material will adopt is typically the one that has the lowest energy. However topological phases and topological properties are not determined by energetics, but by the various symmetries of a system. The physical properties of a system, such as its electric or magnetic fields, can form complex structures which wind or tie themselves in knots because they are forced to by symmetry.

“The energetic cost of untying these knots is very high, so these structures end up being quite robust,” said Slager. “Being able to create, destroy and control these topological objects is very appealing, for example in the field of topological quantum computing.”

In order to do this, the researchers’ future goals are to develop a better understanding of topological polarisation, as well as develop a proof of concept for a device in which the polar merons/antimerons they discovered can be controlled, or lead to exciting new physical phenomena.

This project was initiated by Bennett during his PhD at Cambridge’s Cavendish Laboratory before he moved to the University of Liège, Belgium, where he continued this research with Prof. Philippe Ghosez and Dr Eric Bousquet, both experts in ferroelectricity.



Journal

Nature Communications

DOI

10.1038/s41467-023-37337-8

Article Title

Polar meron-antimeron networks in strained and twisted bilayers

Article Publication Date

24-Mar-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Why Beer Foam Stays So Stable: The Science Behind the Perfect Pour

Why Beer Foam Stays So Stable: The Science Behind the Perfect Pour

August 26, 2025
SwRI Scientist Heads Science Team for New NASA Heliophysics AI Foundation Model

SwRI Scientist Heads Science Team for New NASA Heliophysics AI Foundation Model

August 26, 2025

Expanding Azole Chemistry with Precise N-Alkylation

August 26, 2025

Advancing Green Technology with More Efficient and Reliable SiC Devices

August 26, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    148 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

CircCOG5 Regulates Ferroptosis in Ovarian Cancer

AI Review Reveals Innovative Approaches to Address Missing Traffic Data in Smart Cities

Balancing Practicality and Complexity in Parkinson’s Models

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.