• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Discovery linking microbes to methane emissions could make agriculture more sustainable

Bioengineer by Bioengineer
July 3, 2019
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A heritable subset of the core rumen microbiome dictates dairy cow productivity and emissions

Common dairy cows share the same core group of genetically inherited gut microbes, which influence factors such as how much methane the animals release during digestion and how efficiently they produce milk, according to a new study. By identifying these microbes, the research may help enable scientists to manipulate the rumen (a cow’s first stomach, where microbes break down ingested food), facilitating a transition towards more eco-friendly and productive agriculture. Scientists have long wondered about the connection between a cow’s genetics, its productivity, and the composition of its microbiome. To begin to uncover answers, Robert John Wallace and his team used common nucleotide variations between genes to study the genotypes of an unprecedented 1000 Holstein and Nordic Red dairy cows from the UK, Italy, Sweden, and Finland–the most popular and productive milking cow breeds in developed countries. They identified a core microbiome: a selection of closely related microbes present in at least 50% of all the cattle. The researchers then used two machine learning algorithms to determine that they could accurately predict rumen metabolism, diet, and traits including milk output and methane emissions based on this core microbiome’s composition. A Canonical Correlation Analysis (CCA) showed that the core microbiome was correlated with genetics, suggesting that inherited genes give rise to microbes responsible for methane emissions and other cattle traits. The finding that these influential microbes are linked to heritable genes could enable programs in which breeders select for cattle with microbiomes that produce the least methane.

###

Media Contact
R. John Wallace
[email protected]
http://dx.doi.org/10.1126/sciadv.aav8391

Tags: AgricultureBacteriologyFood/Food Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Social Determinants Affect Pregnant Women’s Alcohol Use

Social Determinants Affect Pregnant Women’s Alcohol Use

October 17, 2025
blank

Aluminum Exposure Alters Key Metabolites in Entomoneis

October 17, 2025

Genotype-Environment Interactions in Pejerrey Sex Differentiation

October 17, 2025

Enterobacter and Bacillus Enhance Composting, Cadmium Immobilization

October 16, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1254 shares
    Share 501 Tweet 313
  • New Study Reveals the Science Behind Exercise and Weight Loss

    106 shares
    Share 42 Tweet 27
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    102 shares
    Share 41 Tweet 26
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    93 shares
    Share 37 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Social Determinants Affect Pregnant Women’s Alcohol Use

Fano Interference Shapes Photon Pairs from Metasurface

Yeast Engineered to Tackle the Rare Earth Metals Challenge

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.