• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Discovery in new material raises questions about theoretical models of superconductivity

Bioengineer by Bioengineer
March 10, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The U.S. Department of Energy's Ames Laboratory has successfully created the first pure, single-crystal sample of a new iron arsenide superconductor, CaKFe4As4, and studies of this material have called into question some long-standing theoretical models of superconductivity.

The material is notable for having the high superconducting temperature of 35K without the need for small amounts of additional elements (such as cobalt or nickel), called dopants.

"That is important because dopants, that were previously used to induce superconductivity, also interfere with superconductivity and other important physical properties of materials" said Adam Kaminski, Ames Laboratory scientist and professor in the Department of Physics and Astronomy at Iowa State University. "This material gave us an excellent opportunity to study superconductivity in pristine samples without the interference of dopants."

Using high resolution angle resolved photoemission spectroscopy and density functional theory, researchers were able to measure the superconducting gap in areas of the momentum space that were previously inaccessible in other materials, and found that their results contradicted the widely accepted antiferromagnetic fluctuation model.

"Our data obtained from samples of pristine iron-arsenic superconductor represents a big deviation from previous studies of doped samples and questions some well-established theories," said Kaminski. "It means that the predictions of previous models are at only partly valid, and there many aspects that are not completely understood. What our work has achieved is to create a new clean avenue of research, towards finding a general model to explain the behavior of these novel superconductors."

###

The research is further discussed in a paper, "Enhancement of the Superconducting Gap by Nesting in CaKFe4As4: A New High Temperature Superconductor", authored by Daixiang Mou, Tai Kong, William R. Meier, Felix Lochner, Lin-Lin Wang, Qisheng Lin, Yun We, S.L. Bud'ko, Ilya Eremin, D.D. Johnson, P.C. Canfield, and Adam Kaminski; and published in Physical Review Letters.

The research was conducted at Ames Laboratory and Institut fur Theoretische Physik III, Ruhr Universität Bochum, Germany.

The work was supported by the U.S. Department of Department of Energy's Office of Science.

Ames Laboratory is a U.S. Department of Energy Office of Science national laboratory operated by Iowa State University. Ames Laboratory creates innovative materials, technologies and energy solutions. We use our expertise, unique capabilities and interdisciplinary collaborations to solve global problems.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Media Contact

Laura Millsaps
[email protected]
@Ames_Laboratory

http://www.external.ameslab.gov

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Mount Sinai Health System Set to Deploy Microsoft Dragon Copilot

November 5, 2025

Common Heartburn and Blood Pressure Medications Associated with Poorer Breast Cancer Prognosis in Extensive Global Study

November 5, 2025

Pediatric Spinal Cord Injury: Trends & 2045 Forecast

November 5, 2025

Resilient Order Emerges from Chasing and Splashing

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1299 shares
    Share 519 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Mount Sinai Health System Set to Deploy Microsoft Dragon Copilot

Common Heartburn and Blood Pressure Medications Associated with Poorer Breast Cancer Prognosis in Extensive Global Study

Pediatric Spinal Cord Injury: Trends & 2045 Forecast

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.