• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Discovery could influence methods to control bacteria on medical and other surfaces

Bioengineer by Bioengineer
June 29, 2017
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Alissa Eckert and Jennifer Oosthuizen, CDC

A flexible tail allows swimming bacteria to thin the surrounding liquid and to free themselves when trapped along walls or obstacles. This finding could influence how bacterial growth on medical, industrial, and agricultural surfaces is controlled. The new study by researchers at Penn State University, published in a recent issue of the Royal Society journal Interface, used mathematical models to understand how bacteria with flagella — a collection of spinning hairs used for propulsion that act together like a tail — overcome forces from the flow of a liquid and navigate complex environments.

"Bacteria are the most abundant organisms on the planet and are often found in liquids," said Mykhailo Potomkin, research associate in mathematics at Penn State and an author of the study. "We know from recent experimental studies that bacteria can reduce the effective viscosity — the internal friction — of a solution, which helps them move more easily.

"In solutions where the concentration of bacteria is large, this is due to collective movement of bacteria effectively thinning the solution, but a decrease of viscosity was also observed in dilute solutions where bacteria are less abundant," Potomkin added. "This effect has been explained by bacterial tumbling — random changes in direction of the bacteria — but a similar decrease in viscosity was also reported in strains of bacteria that don't perform this tumbling behavior. Our work suggests that the bacteria's flagella may be responsible."

Using a mathematical model, the research team demonstrated that flexible flagella allow bacteria to overcome local forces between molecules, reducing viscosity and effectively thinning the liquid. This understanding might have important implications for the creation of biomimetic materials — man-made materials that mimic biology — to alter properties of a solution for biomedical or industrial purposes.

"In order to understand whether we can control the viscosity of a solution, we need to understand how bacteria control it," said Potomkin. "Flagella play a key role in this control. We also investigated how bacteria use flagella to navigate a more complex environment by introducing walls into our model. Bacteria tend to accumulate on walls or obstacles and they often get stuck swimming along walls. We demonstrated that having flexible elastic flagella can sometimes help bacteria to escape such entrapment, for example when nutrients are added to the solution and increase bacteria motility."

Bacteria that build up on biomedical devices (e.g. catheters) and industrial and agricultural pipes and drains in the form of biofilms are difficult to remove and can be resistant to biocides and antibiotics. Understanding how bacteria can escape from walls could eventually inform ways to control or prevent the formation of these often damaging biofilms. Another application may be the ability to develop better ways to trap bacteria, for example to identify types of bacteria in a liquid or to filter them out.

"Our results indicate that if you want to trap bacteria, simple traps may not be enough," said Igor Aronson, holder of the Huck Chair and Professor of Biomedical Engineering, Chemistry, and Mathematics at Penn State and senior author on the paper. "We would need to produce something more sophisticated. Using elastic flagella is one way motile bacteria respond to their environment to persist in harsh conditions."

In addition to Potomkin and Aronson, the research team includes Leonid Berlyand, professor of mathematics at Penn State, and Magali Tournus, postdoctoral researcher at Penn State at the time of the research and current lecturer at Aix Marseille University in France. The research was funded by the National Institutes of Health and supported by the U.S. Department of Energy and the Huck Institutes of the Life Sciences.

###

CONTACTS

Igor Aronson: [email protected]; (814) 867-6260
Barbara K. Kennedy: [email protected], (814) 863-4682

Media Contact

Barbara K. Kennedy
[email protected]
814-863-4682
@penn_state

http://live.psu.edu

Original Source

http://science.psu.edu/news-and-events/2017-news/Aronson6-2017

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Phospholipid Scramblases Drive Tumor Growth Via PS

November 6, 2025

Parents’ Role in Problem-Solving Education for Toddlers

November 6, 2025

One Health: Tackling Zoonoses in Resource-Limited Areas

November 6, 2025

International Research Team Wins €10 Million ERC Synergy Grant to Pioneer Breakthroughs in Drug Delivery

November 6, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1301 shares
    Share 520 Tweet 325
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Woodpeckers Grunt Like Tennis Stars While Drilling, Scientists Discover

Bonding Strengths: Hydroxyapatite Coated Gutta Percha Insights

Phospholipid Scramblases Drive Tumor Growth Via PS

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.