• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Discovering, counting, cataloguing proteins

Bioengineer by Bioengineer
February 11, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Artwork: Christian D. Peikert

Mitochondria, best known for their role as powerhouses of eukaryotic cells, fulfill numerous vital functions. Knowledge about the precise protein composition as well as the functions of individual proteins is essential to understand fundamental processes of cell biology and diseases that are caused by cellular defects. A team of scientists from the universities of Freiburg, Homburg, and Rehovot (Israel) led by Prof. Dr. Bettina Warscheid, Prof. Dr. Nikolaus Pfanner, and Prof. Dr. Nils Wiedemann discovered, counted and determined new mitochondrial proteins with unknown function in the model organism baker's yeast. The study will serve as a source of information for researchers interested in the biology of mitochondria – from yeast to human subjects. This research was funded through European Research Council (ERC) Consolidator Grants. The study was recently published in the current issue of the scientific journal Cell Reports.

Using 'quantitative mass spectrometry' and bioinformatics methods, a team from Warscheid's research group first determined the abundance of thousands of proteins in different cellular fractions of baker's yeast. A team from Wiedemann's research group then analyzed mitochondrial proteins using biochemical methods and microscopy. The resulting mitochondrial proteome comprises a total of 901 proteins, including 82 proteins not previously associated with mitochondria. For an additional 119 a mitochondrial localization had been ambiguous.

While humans require oxygen to breathe, yeast cells can either consume oxygen or use a different metabolic pathway called fermentation, a process well known for producing alcoholic beverages. The researchers cultured yeast cells in a fermentative or respiratory medium and determined that the shift from fermentative to respiratory conditions caused dramatic changes in the mitochondria: The amount of mitochondrial proteins in a single cell doubles and the enzymes required for respiration are even four times more abundant when growing in a respiratory medium.

The scientists further studied in which areas of the mitochondrion the various proteins are localized and how newly discovered proteins interact with other proteins in a network. Through this study the researchers have gained extensive data about the newly defined mitochondrial proteome of baker's yeast.

###

Bettina Warscheid is head of the Department of Biochemistry and Functional Proteomics at the Institute of Biology II. Nils Wiedemann and Nikolaus Pfanner are leaders of research groups at the Institute of Biochemistry and Molecular Biology. Pfanner, Warscheid and Wiedemann are principal investigators of the Cluster of Excellence BIOSS Centre for Biological Signalling Studies as well as the Spemann Graduate School of Biology and Medicine of the University of Freiburg.

Original publication:

Marcel Morgenstern, Sebastian B. Stiller, Philipp Lübbert, Christian D. Peikert, Stefan Dannenmaier, Friedel Drepper, Uri Weill, Philipp Höß, Reinhild Feuerstein, Michael Gebert, Maria Bohnert, Martin van der Laan, Maya Schuldiner, Conny Schütze, Silke Oeljeklaus, Nikolaus Pfanner, Nils Wiedemann* and Bettina Warscheid* (2017): Definition of a High Confidence Mitochondrial Proteome at Quantitative Scale. Cell Reports 19. DOI: http://dx.doi.org/10.1016/j.celrep.2017.06.014 (*corresponding author)

Contact:

University of Freiburg
Institute of Biology II

Media Contact

Bettina Warscheid
[email protected]
49-761-203-2690

Startseite

Original Source

http://www.pr.uni-freiburg.de/pm-en/2017/discovering-counting-cataloguing-proteins?set_language=en

Share16Tweet7Share2ShareShareShare1

Related Posts

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026

AI-Enhanced Optical Coherence Photoacoustic Microscopy Revolutionizes 3D Cancer Model Imaging

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.