• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Discovered: Fast-growing galaxies from early universe

Bioengineer by Bioengineer
May 24, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: The image was created by the Max Planck Institute for Astronomy using material from the NASA/ESA Hubble Space Telescope.

Pasadena, CA– A team of astronomers including Carnegie's Eduardo Bañados and led by Roberto Decarli of the Max Planck Institute for Astronomy has discovered a new kind of galaxy which, although extremely old–formed less than a billion years after the Big Bang–creates stars more than a hundred times faster than our own Milky Way.

Their findings are published by Nature.

The team's discovery could help solve a cosmic puzzle–a mysterious population of surprisingly massive galaxies from when the universe was only about 10 percent of its current age.

After first observing these galaxies a few years ago, astronomers proposed that they must have been created from hyper-productive precursor galaxies, which is the only way so many stars could have formed so quickly. But astronomers had never seen anything that fit the bill for these precursors until now.

This newly discovered population could solve the mystery of how these extremely large galaxies came to have hundreds of billions of stars in them when they formed only 1.5 billion years after the Big Bang, requiring very rapid star formation.

The team made this discovery by accident when investigating quasars, which are supermassive black holes that sit at the center of enormous galaxies, accreting matter. They were trying to study star formation in the galaxies that host these quasars.

"But what we found, in four separate cases, were neighboring galaxies that were forming stars at a furious pace, producing a hundred solar masses' worth of new stars per year," Decarli explained.

"Very likely it is not a coincidence to find these productive galaxies close to bright quasars. Quasars are thought to form in regions of the universe where the large-scale density of matter is much higher than average. Those same conditions should also be conducive to galaxies forming new stars at a greatly increased rate," added Fabian Walter, also of Max Planck.

"Whether or not the fast-growing galaxies we discovered are indeed precursors of the massive galaxies first seen a few years back will require more work to see how common they actually are," Bañados explained.

Decarli's team already has follow-up investigations planned to explore this question.

The team also found what appears to be the earliest known example of two galaxies undergoing a merger, which is another major mechanism of galaxy growth. The new observations provide the first direct evidence that such mergers have been taking place even at the earliest stages of galaxy evolution, less than a billion years after the Big Bang.

###

Other members of the research team are: Bram Venemans, Emanuele Farina, Chiara Mazzucchelli, and Hans-Walter Rix of Max Planck Institute for Astronomy; Frank Bertoldi of the University of Bonn; Chris Carilli of the National Radio Astronomy Observatory and Cambridge University; Xiaohui Fan of University of Arizona; Dominik Riechers of Cornell University, Michael A. Strauss of Princeton University, Ran Wang of Peking University), and Y. Yang of the Korea Astronomy and Space Science Institute.

The researchers were supported by the DFG priority programme 1573 "The physics of the interstellar medium," ERC grant COSMIC-DAWN, the National Science Foundation of China, the National Key Program for Science and Technology Research and Development, and a Carnegie-Princeton fellowship.

The discoveries were made at ALMA Observatory, which is a partnership of the ESO, NSF, and NINS, together with the NRC, NSC, ASIAA, and KAS, in cooperation with Chile.

The Carnegie Institution for Science (carnegiescience.edu) is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials

Media Contact

Eduardo Bañados
[email protected]
626-304-0236
@carnegiescience

https://carnegiescience.edu/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Xenopax Shows Promise in Steroid-Refractory GvHD Treatment

September 29, 2025

Electric Space Heating and Appliances Slash Residential Energy Use in the U.S.

September 29, 2025

Global Call to Advance Robust and Reproducible Polyphenol Research to Launch Next October in Malta at Polyphenols Applications World Congress and Iprona

September 29, 2025

Novel CC/NiFeP-CuCo-LDH Composite Exhibits Enhanced Capacitive Performance

September 29, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    86 shares
    Share 34 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    73 shares
    Share 29 Tweet 18
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    58 shares
    Share 23 Tweet 15
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Xenopax Shows Promise in Steroid-Refractory GvHD Treatment

Electric Space Heating and Appliances Slash Residential Energy Use in the U.S.

Global Call to Advance Robust and Reproducible Polyphenol Research to Launch Next October in Malta at Polyphenols Applications World Congress and Iprona

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 61 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.