• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Directly wireless communication of human minds via non-invasive brain-computer-metasurface platform

Bioengineer by Bioengineer
June 12, 2022
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Recently, coding metasurfaces, incorporating active components, have enabled real-time and programmable controls over EM functionalities, which used to be static or quite limited in conventional passive counterparts. However, these kinds of metasurface still require the manual operations. To directly inspect and distinguish the human’s will, the brain-computer interface (BCI) is presented to establish the communication between brain and devices, offering a new control perspective for programmable metasurfaces. By collecting brain signals from the “special hat”, a BCI can decode operator’s intentions and send commands to the controlled objects, without any requirement for the operator’s muscle activity.

Figure 1 | Working principle of the EBCM.

Credit: by Qian Ma, Wei Gao, Qiang Xiao, Lingsong Ding, Tianyi Gao, Yajun Zhou, Xinxin Gao, Tao Yan, Che Liu, Ze Gu, Xianghong Kong, Qammer H. Abbasi, Lianlin Li, Cheng-Wei Qiu, Yuanqing Li and Tie Jun Cui

Recently, coding metasurfaces, incorporating active components, have enabled real-time and programmable controls over EM functionalities, which used to be static or quite limited in conventional passive counterparts. However, these kinds of metasurface still require the manual operations. To directly inspect and distinguish the human’s will, the brain-computer interface (BCI) is presented to establish the communication between brain and devices, offering a new control perspective for programmable metasurfaces. By collecting brain signals from the “special hat”, a BCI can decode operator’s intentions and send commands to the controlled objects, without any requirement for the operator’s muscle activity.

In a new paper published in eLight, a team of scientists, led by Professor Tie Jun Cui from State Key Laboratory of Millimeter Waves, Southeast University, China, and co-workers have developed an electromagnetic brain-computer-metasurface (EBCM) to flexibly and non-invasively control the information syntheses and wireless transmissions. The presented EBCM can not only translate the operator’s brain messages to EEG signals, and further into various EM commands, but also perform the wireless “mind-communication” between two operators. As shown in Fig. 1, a displayer is placed in front of the operator to show the related commands. By simply staring the desired command, the EBCM can understand the operator’s intention and realize the EM functions including visual-beam scanning, wave modulations, and pattern encoding.

The researchers designed and experimentally demonstrated the wireless text communication based on EBCM, as shown in Fig. 2. A text GUI is provided for the BCI operator, where the visual buttons are directly coded as a specific coding sequence consisting of ‘0’ and ‘1’. In the experiment, the single-beam mode with high gain and the random scattering mode with low gain are used to distinguish the amplitude of metasurface reflections, which correspond to codes “1” (high amplitude) and “0” (low amplitude), respectively, for wireless information transmission. As a demonstration of the prototype, the researchers demonstrated the wireless transmission of text from one operator to another in the EBCM communication system. Operator A, as the text sender, sends letters by visually looking at the character buttons on the EBCM GUI. When the target letter is decoded from the EEG signal, an ASCII-based encoding sequence is implemented on the FPGA to switch time-varying modes, manipulating the metasurface to send information into space, which is received, demodulated, and presented by another operator’s EBCM.

“The average inputting time of each character is about 5s using the P300-based BCI by a skillful BCI operator. It is possible to improve the text input speed by applying some quick-spelling paradigms. It is also worth mentioning that the P300-based BCIs yield great accuracies and robustness among various noninvasive BCIs” they added.

“The presented work, combining the EM wave space and BCI, may further open up a new direction to explore the deep integration of metasurface, human brain intelligence, and artificial intelligence, so as to build up new generations of bio-intelligent metasurface systems.” the scientists forecast.



Journal

eLight

DOI

10.1186/s43593-022-00019-x

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Innovative Pimple Patches Offer Effective Solution for Stubborn Acne

August 29, 2025

Revealing the Unseen: A Breakthrough Method to Enhance Nanoscale Light Emission

August 29, 2025

Fluorescent Smart Eye Patch Revolutionizes Monitoring of Eye Health

August 29, 2025

Protective Dual Shell Extends Lifespan of Lithium-Rich Batteries

August 29, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Do people and monkeys see colors the same way?

    112 shares
    Share 45 Tweet 28

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Physicians’ Primary Duty: Easing Patient Suffering

Ovarian Cystectomy’s Effects on Borderline Tumor Outcomes

Internal Fat Biology Changes Identified as a Key Driver of Heart Failure

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.