• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, November 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Directly wireless communication of human minds via non-invasive brain-computer-metasurface platform

Bioengineer by Bioengineer
June 12, 2022
in Chemistry
Reading Time: 3 mins read
0
Figure 1 | Working principle of the EBCM.
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Recently, coding metasurfaces, incorporating active components, have enabled real-time and programmable controls over EM functionalities, which used to be static or quite limited in conventional passive counterparts. However, these kinds of metasurface still require the manual operations. To directly inspect and distinguish the human’s will, the brain-computer interface (BCI) is presented to establish the communication between brain and devices, offering a new control perspective for programmable metasurfaces. By collecting brain signals from the “special hat”, a BCI can decode operator’s intentions and send commands to the controlled objects, without any requirement for the operator’s muscle activity.

Figure 1 | Working principle of the EBCM.

Credit: by Qian Ma, Wei Gao, Qiang Xiao, Lingsong Ding, Tianyi Gao, Yajun Zhou, Xinxin Gao, Tao Yan, Che Liu, Ze Gu, Xianghong Kong, Qammer H. Abbasi, Lianlin Li, Cheng-Wei Qiu, Yuanqing Li and Tie Jun Cui

Recently, coding metasurfaces, incorporating active components, have enabled real-time and programmable controls over EM functionalities, which used to be static or quite limited in conventional passive counterparts. However, these kinds of metasurface still require the manual operations. To directly inspect and distinguish the human’s will, the brain-computer interface (BCI) is presented to establish the communication between brain and devices, offering a new control perspective for programmable metasurfaces. By collecting brain signals from the “special hat”, a BCI can decode operator’s intentions and send commands to the controlled objects, without any requirement for the operator’s muscle activity.

In a new paper published in eLight, a team of scientists, led by Professor Tie Jun Cui from State Key Laboratory of Millimeter Waves, Southeast University, China, and co-workers have developed an electromagnetic brain-computer-metasurface (EBCM) to flexibly and non-invasively control the information syntheses and wireless transmissions. The presented EBCM can not only translate the operator’s brain messages to EEG signals, and further into various EM commands, but also perform the wireless “mind-communication” between two operators. As shown in Fig. 1, a displayer is placed in front of the operator to show the related commands. By simply staring the desired command, the EBCM can understand the operator’s intention and realize the EM functions including visual-beam scanning, wave modulations, and pattern encoding.

The researchers designed and experimentally demonstrated the wireless text communication based on EBCM, as shown in Fig. 2. A text GUI is provided for the BCI operator, where the visual buttons are directly coded as a specific coding sequence consisting of ‘0’ and ‘1’. In the experiment, the single-beam mode with high gain and the random scattering mode with low gain are used to distinguish the amplitude of metasurface reflections, which correspond to codes “1” (high amplitude) and “0” (low amplitude), respectively, for wireless information transmission. As a demonstration of the prototype, the researchers demonstrated the wireless transmission of text from one operator to another in the EBCM communication system. Operator A, as the text sender, sends letters by visually looking at the character buttons on the EBCM GUI. When the target letter is decoded from the EEG signal, an ASCII-based encoding sequence is implemented on the FPGA to switch time-varying modes, manipulating the metasurface to send information into space, which is received, demodulated, and presented by another operator’s EBCM.

“The average inputting time of each character is about 5s using the P300-based BCI by a skillful BCI operator. It is possible to improve the text input speed by applying some quick-spelling paradigms. It is also worth mentioning that the P300-based BCIs yield great accuracies and robustness among various noninvasive BCIs” they added.

“The presented work, combining the EM wave space and BCI, may further open up a new direction to explore the deep integration of metasurface, human brain intelligence, and artificial intelligence, so as to build up new generations of bio-intelligent metasurface systems.” the scientists forecast.



Journal

eLight

DOI

10.1186/s43593-022-00019-x

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

LHAASO Sheds Light on the Origin of the Cosmic Ray “Knee” Phenomenon

November 16, 2025
Metal-Hydroxyls Drive Proton Transfer in O–O Formation

Metal-Hydroxyls Drive Proton Transfer in O–O Formation

November 15, 2025

What Insights Do Polymers Offer for Advancing Alzheimer’s Disease Treatment?

November 15, 2025

Breakthrough: Lead-Free Alternative Unveiled for Key Electronics Component

November 15, 2025

POPULAR NEWS

  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    210 shares
    Share 84 Tweet 53
  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    201 shares
    Share 80 Tweet 50
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    318 shares
    Share 127 Tweet 80
  • Neurological Impacts of COVID and MIS-C in Children

    89 shares
    Share 36 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Microglial CARs Enhance Selective Phagocytosis of Aβ1-42

Oxidative Stress: A Double-Edged Sword in Breast Cancer

Enhanced CAR-T Cytotoxicity via IDR-Induced Condensation

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.