• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Diffusion dynamics play an essential role in regulating stem cells and tissue development

Bioengineer by Bioengineer
July 26, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Gradients of molecular signaling factors play an essential role in numerous events in embryonic development, from patterning limb and organ formation to the intricate shaping of the brain and neuroanatomical architecture. These gradients are a consequence of diffusion dynamics in tissues, and newly published work describes two vital aspects of these diffusion processes in tissue development — first, the influence of molecular diffusion gradients on stem cell signaling pathways is described in detail, including a summary of recent discoveries in how gas and nutrient concentrations can influence stem cell potency, differentiation, and metabolism. Secondly, the paper describes novel applications of diffusion equations to model concentration gradients of nutrients and signaling factors in three-dimensional (3D) tissue constructs under a variety of conditions, including with or without cellular metabolism of the diffusing substance.

With the recent advent of complex stem-cell-derived 3D tissue constructs (e.g., organoids or mini-organs) in forming and modeling innate tissues and organ structures like the brain, and with recent discoveries that gas and nutrient concentrations can have a vast number of effects on stem cell state and function, a novel role of diffusion modeling will be immensely important to rigorous study of developmental processes, disease modeling, and regenerative medicine. This work provides several tools and resources that will enable researchers from many backgrounds to understand and model diffusion processes for their specific types of tissue constructs, including models for diffusion either into or out of the tissue, and for any type of diffusant molecule, biomaterial scaffold, and cell type.

Although many mechanisms of how stem cells self-organize at the proper place and time into mature tissues and organs still remain to be elucidated, it is clear that the architecture, composition, and function of numerous tissues is influenced by many overlapping diffusion signals during development, and this work helps open the door for many more complex and unique diffusion solutions to be explored and studied as they relate to developmental events.

"Understanding these mechanisms requires a synthesis of stem cell biology and mass transfer physics, where physical diffusion phenomena affect neurodevelopmental cues that define cell identities and ultimately help shape the cellular architecture of the brain," said Dr. Richard McMurtrey, the author of the work. "The dynamics of all this cross-talk are complex and still beyond our complete comprehension, but it is fascinating that the layout of the brain and all the processing of information that flows through it ultimately depend on numerous critical signaling events that organize these cellular systems early in development."

###

Reference: McMurtrey RJ. "Roles of Diffusion Dynamics and Molecular Concentration Gradients in Cellular Differentiation and Three-Dimensional Tissue Development." Stem Cells and Development. 2017; 26 (In Press). https://doi.org/10.1089/scd.2017.0066

Media Contact

Jenny Redford
[email protected]

http://www.neuralregeneration.org

http://www.neuralregeneration.org/news/stem-cell-development-diffusion.php

Related Journal Article

http://dx.doi.org/10.1089/scd.2017.0066

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Complete Chloroplast Genome of Cyathea delgadii Revealed

September 11, 2025
blank

Scientist, Advocate, and Entrepreneur Lucy Shapiro Honored with Lasker-Koshland Special Achievement Award

September 11, 2025

Zoology Spotlight: Octopuses Always Use Their Best Arm for Every Task

September 11, 2025

Drivers of Human-Gaur Conflict in Tamil Nadu

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    63 shares
    Share 25 Tweet 16
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Complete Chloroplast Genome of Cyathea delgadii Revealed

Smart ROS Nanoplatform Boosts Targeted Cancer Therapy

Creating AI Companions for Caregiver Role Transitions

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.