• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Diet/lifestyle program reverses biological age: a female case series

Bioengineer by Bioengineer
April 3, 2023
in Chemistry
Reading Time: 4 mins read
0
Figure 1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

“[…] these data suggest that a methylation-supportive diet and lifestyle intervention may favorably influence biological age in both sexes during middle age and older.”

Figure 1

Credit: 2023 Fitzgerald et al.

“[…] these data suggest that a methylation-supportive diet and lifestyle intervention may favorably influence biological age in both sexes during middle age and older.”

BUFFALO, NY- April 3, 2023 – A new research paper was published in Aging (listed by MEDLINE/PubMed as “Aging (Albany NY)” and “Aging-US” by Web of Science) Volume 15, Issue 6, entitled, “Potential reversal of biological age in women following an 8-week methylation-supportive diet and lifestyle program: a case series.”

In this new study, researchers Kara N. Fitzgerald, Tish Campbell, Suzanne Makarem, and Romilly Hodges from the Institute for Functional Medicine, Virginia Commonwealth University and the American Nutrition Association reported on a case series of six women who completed a methylation-supportive diet and lifestyle program designed to impact DNA methylation and measures of biological aging. 

“The modifiable lifestyle intervention used by participants in this case series was first investigated in a pilot clinical trial in which participants (all men between the ages of 50-72 years) reduced their biological age by an average of 3.23 years as compared to controls [7]. The case series reported on herein was conducted to further the investigation of a modifiable lifestyle intervention that was largely the same in other populations; importantly in women.”

The team carried out an intervention consisting of an eight-week program. This program included guidance on diet, sleep, exercise, and relaxation, supplemental probiotics and phytonutrients and nutritional coaching. DNA methylation and biological age analysis (Horvath DNAmAge clock (2013), normalized using the SeSAMe pipeline [a]) was conducted on blood samples at baseline and at the end of the eight-week period. 

Five of the six participants exhibited a biological age reduction of between 1.22 and 11.01 years from their baseline biological age. There was a statistically significant (p=.039) difference in the participants’ mean biological age before (55.83 years) and after (51.23 years) the 8-week diet and lifestyle intervention, with an average decrease of 4.60 years. The average chronological age at the start of the program was 57.9 years and all but one participant had a biological age younger than their chronological age at the start of the program, suggesting that biological age changes were unrelated to disease improvement and instead might be attributed to underlying aging mechanisms.

“This case series of women participants extends the previous pilot study of this intervention in men, indicating that favorable biological age changes may be achievable in both sexes. In addition, the investigation of otherwise-healthy individuals, rather than those with diagnosed disease, suggests an influence directly on underlying mechanisms of aging instead of disease-driven aging.”

 

Continue Reading: DOI: https://doi.org/10.18632/aging.204602 

Corresponding Author: Kara N. Fitzgerald

Corresponding Email: [email protected] 

Keywords: DNA methylation, epigenetic aging, lifestyle, biological clock

Sign up for free Altmetric alerts about this article: https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.204602

 

About Aging-US:

Launched in 2009, Aging publishes papers of general interest and biological significance in all fields of aging research and age-related diseases, including cancer—and now, with a special focus on COVID-19 vulnerability as an age-dependent syndrome. Topics in Aging go beyond traditional gerontology, including, but not limited to, cellular and molecular biology, human age-related diseases, pathology in model organisms, signal transduction pathways (e.g., p53, sirtuins, and PI-3K/AKT/mTOR, among others), and approaches to modulating these signaling pathways.

Please visit our website at www.Aging-US.com​​ and connect with us:

  • SoundCloud
  • Facebook
  • Twitter
  • Instagram
  • YouTube
  • LabTube
  • LinkedIn
  • Reddit
  • Pinterest

 

Click here to subscribe to Aging publication updates.

For media inquiries, please contact [email protected].

 

Aging (Aging-US) Journal Office

6666 E. Quaker Str., Suite 1B

Orchard Park, NY 14127

Phone: 1-800-922-0957, option 1

###



Journal

Aging-US

DOI

10.18632/aging.204602

Method of Research

Experimental study

Subject of Research

People

Article Title

Potential reversal of biological age in women following an 8-week methylation-supportive diet and lifestyle program: a case series

Article Publication Date

22-Mar-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Scientists Convert Plastic Waste into High-Performance CO2 Capture Materials

Scientists Convert Plastic Waste into High-Performance CO2 Capture Materials

September 5, 2025
Decoding Orderly and Disorderly Behavior in 2D Nanomaterials: Paving the Way for AI-Driven Custom Designs

Decoding Orderly and Disorderly Behavior in 2D Nanomaterials: Paving the Way for AI-Driven Custom Designs

September 5, 2025

Physicists Develop Visible Time Crystal for the First Time

September 5, 2025

Adaptive Visible-Infrared Camouflage Enables Wide-Spectrum Radiation Control for Extreme Temperature Environments

September 5, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Understanding Nurses’ Incident Reporting Challenges in Mogadishu

ECG Insights on Stress in Scorpion Mud Turtle

Gender Variations in Microglial Stress Response Uncovered

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.