• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Did eating starchy foods give humans an evolutionary advantage?

Bioengineer by Bioengineer
October 17, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Found in saliva, the protein enzyme encoded by the AMY1 gene begins the digestive process by breaking down starch when you chew your food.

In humans, the number of copies of the gene varies widely: some people have two, others 20, with an average of six to eight. Until now, however, few studies have attempted to determine the physiological role this variation might have in humans.

Published in the American Journal of Clinical Nutrition, researchers from the University of Sydney conducted the first large-scale, systematic analysis of the influence of AMY1 copy numbers on 201 healthy participants during four linked experiments.

People with more copies of the AMY1 gene – and corresponding higher concentrations of the amylase enzyme in their saliva – were found to digest starchy carbohydrates faster.

They also displayed a higher blood glucose response to foods containing starch such as bread and pasta, but not sugary foods. As sugary foods shouldn't be digested by amylase, the lack of an association indicates the difference in starch digestion observed was due to differences in the enzyme and therefore differences in the number of copies of the gene.

Lead author Dr Fiona Atkinson from the University's Charles Perkins Centre and Faculty of Science, explained the findings were significant for better understanding of human evolutionary biology.

"The wide variation in the number of copies of the AMY1 in humans is not found in other primates," Dr Atkinson said.

"There has been speculation it could represent an adaptation to the influence of diet during human evolution – perhaps associated with the shift from the low starch diet of hunter-gatherers to the high starch diets of Neolithic farmers.

"It's also possible individuals with high numbers of copies of the gene had an advantage at certain times during human evolution. If, as has been argued, consumption of carbohydrates – particularly starch – aided accelerated expansion of the human brain, then higher levels of glucose in mothers' blood during pregnancy may have supported the increasingly large brain and higher body fat of human infants compared to other primates."

The research also demonstrated a difference in large bowel metabolism, as people with a low number of copies of the gene displayed higher methane levels in their breath; a rise in breath methane is commonly used in clinical practice to assess carbohydrate maldigestion or malabsorption.

Co-author Professor Jennie Brand-Miller, from the University's Charles Perkins Centre and School of Life and Environmental Sciences said this difference did not necessarily imply starch itself was less digestible in people with low numbers of copies of the gene.

"These results suggest people with varying numbers of copies of the AMY1 gene have a different gut microbiome, the diverse community of trillions of microorganisms that live in the digestive tract," she said.

"We currently don't know much about the effects methane-producing gut organisms have in humans, despite being present in around one third of adults.

"However for animals, methane production by microbiota in the large bowel increases the energy produced by the host and is associated with weight gain.

"While our study found no association between the numbers of copies of the AMY1 gene and body mass index, others have. Further research is needed to confirm the connection between the gene, its influence on methane production and resulting differences in the microbiome."

###

Media Contact

Rachel Fergus
[email protected]
61-293-512-261
@SydneyUni_Media

http://www.usyd.edu.au/

https://sydney.edu.au/news-opinion/news/2018/10/18/did-eating-starchy-foods-give-humans-an-evolutionary-advantage–.html

Related Journal Article

http://dx.doi.org/10.1093/ajcn/nqy164

Share12Tweet8Share2ShareShareShare2

Related Posts

Early Body Composition in Very Preterm Infants Fed High-Volume Human Milk

October 31, 2025

Optimizing Harm Reduction in Quebec Youth Cannabis Use

October 31, 2025

Insights from 100,000+ Multi-Cancer Detection Tests

October 31, 2025

Training Gaps for Migrant Care Assistants in Dementia

October 31, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1293 shares
    Share 516 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    202 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Machine Learning Enhances Vocational Training Impact Prediction

Early Body Composition in Very Preterm Infants Fed High-Volume Human Milk

Advancing Treatment of Breast Cancer Brain Metastasis: Linking Biological Insights to Innovative Therapies

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.