• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Diabetic status modifies the impact of an NAFLD-associated SNP

Bioengineer by Bioengineer
November 17, 2022
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers from Tokyo Medical and Dental University (TMDU) and Cincinnati Children’s Hospital Medical Center (CCHMC) find that a point mutation in the glucokinase regulatory protein gene protects against liver disease in nondiabetic patients but predisposes diabetic patients to nonalcoholic fatty liver disease

Organoid butterflies on NASH spider web

Credit: Institute of Research, TMDU

Researchers from Tokyo Medical and Dental University (TMDU) and Cincinnati Children’s Hospital Medical Center (CCHMC) find that a point mutation in the glucokinase regulatory protein gene protects against liver disease in nondiabetic patients but predisposes diabetic patients to nonalcoholic fatty liver disease

 

Tokyo, Japan – Context is known to influence many spheres. And now, researchers from Japan have found that a patients’ health context—that is, the other conditions a patient has—can determine whether a specific gene mutation is helpful or harmful. Researchers from Tokyo Medical and Dental University (TMDU) and Cincinnati Children’s Hospital Medical Center (CCHMC) have revealed that a genetic mutation with a controversial connection to liver disease confers different levels of risk depending on whether patients have diabetes.

 

Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease, and can develop into nonalcoholic steatohepatitis (NASH) involving fat accumulation, damage, and inflammation in the liver. Known genetic variants explain only a modest fraction of the risk of developing NAFLD/NASH, and researchers disagree on the importance of certain mutations.

 

“The association of the glucokinase regulatory protein (GCKR)-rs1260326 mutation with NAFLD is widely debated,” says first author Masaki Kimura at CCHMC. “This mutation appears to protect patients from diabetes and chronic kidney disease, but is associated with an increased risk of NAFLD and other diseases.”

 

To better understand the role of GCKR-rs1260326 in NAFLD/NASH, cells were taken from 24 donors and grown into tiny liver-like organs, called organoids. Feeding them extra fatty acids resulted in fat accumulation, inflammation, and insulin resistance, traits that are seen in the livers of patients with NASH. The connections between genetic variants and liver organoid features were then closely analyzed.

 

“The results were very clear,” states Takanori Takebe, senior author. “We found that the NAFLD/NASH risk connected to the GCKR-rs1260326 mutation in our organoid model was very high, despite it rarely being considered to be clinically significant.”

 

Organoids with two copies of the GCKR-rs1260326 mutation took up fat from their environment much more efficiently than other organoids, which explains how this mutation could make patients develop a fatty liver. Unexpectedly, analysis of real-life patient data showed that the level of liver inflammation in NASH patients with diabetes differed based on the presence or absence of the mutation: diabetic patients with two copies of the mutation had high levels of liver inflammation, while diabetic patients with no copies of the mutated gene showed only low levels of inflammation.

 

Furthermore, the researchers found that treating patients with metformin, a drug commonly used for diabetes, only worked when patients carried unmutated copies of GCKR. However, combined treatment with the drugs nicotinamide riboside and nitozoxanide improved the function of the liver organoids with two copies of the GCKR-rs1260326 mutation.

 

“This finding suggests a new treatment approach that could make a real impact in the lives of diabetic patients with the mutation who do not respond to standard medication,” states Kimura.

 

With NAFLD affecting nearly one billion people globally, early identification of patients who need different types of care may improve NASH prevention and treatment. In addition, this study shows that studying organoids ‘‘in a dish’’ and combining this information with clinical data can offer rich insight into complex, common diseases.

 

###

 

The article, “En masse organoid phenotyping informs metabolic-associated genetic susceptibility to NASH,” was published in Cell at DOI: 10.1016/j.cell.2022.09.031.



Journal

Cell

DOI

10.1016/j.cell.2022.09.031

Article Title

En masse organoid phenotyping informs metabolic-associated genetic susceptibility to NASH

Share12Tweet8Share2ShareShareShare2

Related Posts

Exploring Fungal Diversity via Metabarcoding Techniques

Exploring Fungal Diversity via Metabarcoding Techniques

August 27, 2025
METTL3-Driven m6A Boosts Sorafenib’s Antitumor Effects

METTL3-Driven m6A Boosts Sorafenib’s Antitumor Effects

August 27, 2025

Immune Cells in the Brain: Crucial Architects of Adolescent Neural Wiring

August 26, 2025

Dihydromyricetin Shields Against Spinal Cord Injury Damage

August 26, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    148 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring the Landscape of Biomedical Engineering Education

Nucleotides: Key Nutrients for Healthy Laying Hens

68Ga-FAPI-04 PET/CT vs. CECT for Peritoneal Metastases

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.