• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Diabetic fruit flies may unlock secrets in humans

Bioengineer by Bioengineer
January 25, 2018
in Biology, Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Courtesy of MSU

EAST LANSING, Mich. — Fruit flies may be small, but the genetic secrets they can unlock for humans are mighty.

In the current issue of the journal Development, Michigan State University researchers mapped the signaling processes used by insulin in fruit flies. The significance of the discovery in the tiny Drosophila melanogaster, which have been called "tiny people with wings, genetically speaking," sheds light on how these processes may be altered by diabetes in humans.

Diabetes represents a growing threat to public health. An estimated one-third of the U.S. population has diabetes or the elevated blood sugar associated with pre-diabetes. As it turns out, fruit flies may be able to help address this issue. Insulin signaling is an important process for these creatures; past studies have proven that the natural hormone insulin controls growth and development of the fly.

Additionally, fruit flies raised on a high-sugar diet consisting solely of bananas can actually develop a diabetic-like state, with metabolic dysfunction similar to humans, said David Arnosti, MSU biochemistry professor, director of MSU's Gene Expression in Development and Disease Initiative and the study's senior author.

As an extension of these past findings, Yiliang Wei, a graduate student in Arnosti's lab and study co-author, focused on the insulin receptor protein, which binds to insulin and regulates its effects.

"This regulation is similar to the volume control on a hearing aid," Arnosti said. "If you turn it way down, it doesn't matter how loud someone shouts at you."

If the volume is too far down, this low expression may be linked to diabetes as well as Alzheimer's disease. Cranking up the volume, or overexpression, may actually give cancer cells a growth advantage. Balancing that expression sweet spot, so to speak, involves some complex circuitry – molecular wiring discovered by the MSU team.

Little was known about how levels of this protein were regulated before the researchers mapped its controlling circuits. One surprising finding was the large number of genetic switches controlling expression of the receptor, which had been previously assumed to possess rather simple regulation. The structure and function of this circuitry is likely to have been sculpted by evolutionary selection.

The tiny fruit fly has once again proven itself as an effective model organism and given the team solid ground on which to move forward. The researchers predict that the human gene will be similarly regulated, which could open a new chapter in diabetes research to find ways to modulate insulin signaling through control of the receptor, Arnosti said.

###

Additional MSU scientists contributing to this paper include Rewatee Gokhale, Anne Sonnenschein, Andrew Ingersoll and Kelly Monet Montgomery.

This research was funded by the National Institutes of Health.

Michigan State University has been working to advance the common good in uncommon ways for more than 150 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world's most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

For MSU news on the Web, go to MSUToday. Follow MSU News on Twitter at twitter.com/MSUnews.

Media Contact

Layne Cameron
[email protected]
517-353-8819
@MSUnews

http://msutoday.msu.edu/journalists/

Share12Tweet8Share2ShareShareShare2

Related Posts

Path-Integral Approach to Wright-Fisher Model Explained

Path-Integral Approach to Wright-Fisher Model Explained

November 12, 2025

CRISPR Advances: rAAV Vectors in Gene Editing

November 12, 2025

EEG and ECG Connectivity Shifts During Tilt Testing

November 12, 2025

Bayesian Electronics: Pillar of Trustworthy AI

November 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    317 shares
    Share 127 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    209 shares
    Share 84 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    140 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1306 shares
    Share 522 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Path-Integral Approach to Wright-Fisher Model Explained

CRISPR Advances: rAAV Vectors in Gene Editing

EEG and ECG Connectivity Shifts During Tilt Testing

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.