• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, November 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS

Device Made of DNA Inserted Into Bacterial Cell

Bioengineer by Bioengineer
October 29, 2013
in NEWS
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers at the Weizmann Institute of Science have recently made an important step in this direction: They have succeeded in creating a genetic device that operates independently in bacterial cells. The device has been programmed to identify certain parameters and mount an appropriate response.

The device searches for transcription factors — proteins that control the expression of genes in the cell. A malfunction of these molecules can disrupt gene expression. In cancer cells, for example, the transcription factors regulating cell growth and division do not function properly, leading to increased cell division and the formation of a tumor. The device, composed of a DNA sequence inserted into a bacterium, performs a “roll call” of transcription factors. If the results match preprogrammed parameters, it responds by creating a protein that emits a green light — supplying a visible sign of a “positive” diagnosis. In follow-up research, the scientists — Prof. Ehud Shapiro and Dr. Tom Ran of the Biological Chemistry and Computer Science and Applied Mathematics Departments — plan to replace the light-emitting protein with one that will affect the cell’s fate, for example, a protein that can cause the cell to commit suicide. In this manner, the device will cause only “positively” diagnosed cells to self-destruct.

In the present study, published in Nature’s Scientific Reports, the researchers first created a device that functioned like what is known in computing as a NOR logical gate: It was programmed to check for the presence of two transcription factors and respond by emitting a green light only if both were missing. When the scientists inserted the device into four types of genetically engineered bacteria — those making both transcription factors, those making none of the transcription factors, and two types making one of the transcription factors each — only the appropriate bacteria shone green. Next, the research team — which also included graduate students Yehonatan Douek and Lilach Milo — created more complex genetic devices, corresponding to additional logical gates.

Following the success of the study in bacterial cells, the researchers are planning to test ways of recruiting such bacteria as an efficient system to be conveniently inserted into the human body for medical purposes (which shouldn’t be a problem; recent research reveals there are already 10 times more bacterial cells in the human body than human cells). Yet another research goal is to operate a similar system inside human cells, which are much more complex than bacteria.

Story Source: The above story is reprinted from materials provided by Weizmann Institute of Science. Note: Materials may be edited for content and length. For further information, please contact the source cited above.

Tags: bacteriaBioengineeringdna computer
Share12Tweet8Share2ShareShareShare2

Related Posts

New Shear Wave Insights for Healthy Pediatric Livers

November 1, 2025

Assessing Femoropopliteal Arteries: Health vs. Revascularization

November 1, 2025

Intestinal Parasites in Punjab’s Rock Pigeons Unveiled

November 1, 2025

Sustaining Pediatric Care Amidst Waves of Funding Cuts

November 1, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1294 shares
    Share 517 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    203 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Shear Wave Insights for Healthy Pediatric Livers

Assessing Femoropopliteal Arteries: Health vs. Revascularization

Intestinal Parasites in Punjab’s Rock Pigeons Unveiled

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.