• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Development of high-time-resolution measurement of electron temperature and density in a magnetically confined plasma

Bioengineer by Bioengineer
October 18, 2022
in Chemistry
Reading Time: 5 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Fusion power generation uses the energy generated by fusion reactions in high-temperature plasma. To achieve this, it is necessary to precisely measure the fast-changing high-temperature plasma to understand and control the physical phenomena. A research group from the National Institute for Fusion Science in Japan and the University of Wisconsin in the United States have developed a high-performance laser device and succeeded in advancing a method to measure electron temperature and density in plasma at a world record speed of 20,000 times per second for almost 70 spatial points, more than 600 times faster than conventional methods. As a result, it is possible to study fast changes in plasma in detail, which has been difficult until now.

Fig. 1 Electron temperature and density measurement of plasma by Thomson scattering

Credit: National Institute for Fusion Science

Fusion power generation uses the energy generated by fusion reactions in high-temperature plasma. To achieve this, it is necessary to precisely measure the fast-changing high-temperature plasma to understand and control the physical phenomena. A research group from the National Institute for Fusion Science in Japan and the University of Wisconsin in the United States have developed a high-performance laser device and succeeded in advancing a method to measure electron temperature and density in plasma at a world record speed of 20,000 times per second for almost 70 spatial points, more than 600 times faster than conventional methods. As a result, it is possible to study fast changes in plasma in detail, which has been difficult until now.

Galileo Galilei, a scientist active in Italy from the late 16th century, proposed the heliocentric theory through astronomical observations and scientific analysis based on them. The instrument that greatly contributed to his research was the telescope, the most advanced technology of the time. Galileo was convinced of the heliocentric theory, through detailed observation and study of the movement of stars, using this high-performance instrument. He also improved the performance of his telescope and discovered craters on the moon and the moons of Jupiter. It can be said that high-performance measurement technology was indispensable to Galileo’s profound insights and new astronomical discoveries. Advanced measurement technology is similarly critical to fusion research.

In the Large Helical Device (LHD), research is conducted to confine the high-temperature plasma necessary for fusion power generation in a magnetic field. Plasma is a state in which electrons and ions are scattered and moving around, and the higher the temperature, the faster they move. To measure the temperature of these electrons, a technique called “Thomson scattering measurement” is used (Fig. 1). In this technique, a powerful laser beam is injected into the plasma and the “scattered light” generated when it strikes the electrons is measured. The scattered light changes to a different color to the incident laser light, due to the Doppler effect. Since this color change corresponds to the speed of the electrons, we can determine their temperature from the color of the scattered light and the electron density from its brightness.

The electron temperature and density of a plasma vary from place to place and change extremely fast with time. In order to accurately determine the plasma state, the Thomson scattering measurement system must have the spatial resolution to measure the spatial distribution of electron temperature and density as finely as possible, and the temporal resolution to measure changes in time as quickly as possible. The LHD Thomson scattering system simultaneously measures electron temperature and density at 144 points in the plasma. This is the world’s top-level spatial resolution. Time variation is measured by repeatedly injecting pulses of laser light into the plasma, but previously the time resolution of the LHD Thomson scattering system was only 30 times per second. To deeply understand the physical phenomena we have seen and to make new discoveries, it has been necessary to improve the time resolution. In particular, faster measurement speeds enable detailed measurements of transient phenomena that occur in plasmas, thus providing a powerful method for understanding and controlling such phenomena.

Associate Professor Ryo Yasuhara, Assistant Professor Hisamichi Funaba, and Assistant Professor Hiyori Uehara of the National Institute for Fusion Science, together with Professor Daniel J. den Hartog of the University of Wisconsin, have developed a Thomson scattering measurement system capable of measuring at up to 20 kHz (20,000 times per second). The heart of the new measurement system is a laser device that can generate intense light many times over at high speed. In this laser system, a laser medium (in the case of this research, a solid medium) is given optical energy (excitation light) to generate a powerful laser beam. However, because the laser beam generation efficiency is not 100%, the energy that is not converted into laser light becomes heat. Therefore, heat generation in the solid medium becomes a problem at high laser repetition rates. When a temperature difference is created in the medium due to heat generation, a thermo-optic effect appears, in which light cannot travel straight ahead because the refractive index of light differs from place to place. The thermo-optic effect can cause a reduction in the output power of the laser light and damage to the solid medium. The research group avoided the problem of thermo-optic effects by applying energy to the medium and extracting the laser pulse from the medium multiple times in the extremely short time period of 5 ms, before a temperature difference occurred in the medium (Fig. 2). As a result, they succeeded in developing a laser capable of a high-speed repetition rate of 20 kHz. This high-performance laser, a newly developed high-speed data acquisition system, and advanced analysis methods developed so far have enabled them to achieve a Thomson scattering measurement system capable of calculating at a world record speed of 20 kHz, more than 600 times faster than conventional systems (Fig. 3).

Associate Professor Yasuhara says, “Just as Galileo achieved important astronomical discoveries with the use of a high-performance telescope, I would like to further develop fusion research by introducing fast electron temperature and density profiles. We expect that this will lead to a more precise understanding of physical phenomena that have been difficult to observe in the past, such as fueling into plasmas and transient phenomena caused by turbulence.”

A paper summarizing some of the results of this research was published online in Scientific Reports on September 6. The professor will also give an oral presentation at the Laser Congress 2022 (hosted by Optica), an international conference on advanced laser research, to be held in Barcelona, Spain, from December 11 to 15, 2022. 



Journal

Scientific Reports

DOI

10.1038/s41598-022-19328-9

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Electron temperature and density measurement by Thomson scattering with a high repetition rate laser of 20 kHz on LHD

Article Publication Date

6-Sep-2022

COI Statement

No Conflict-of-Interest

Share12Tweet8Share2ShareShareShare2

Related Posts

Wayne State Researchers Pioneer Advances to Enhance Quality of Life for Individuals with Type 1 Diabetes

Wayne State Researchers Pioneer Advances to Enhance Quality of Life for Individuals with Type 1 Diabetes

August 27, 2025
Electrostatic Map Reveals Non-Covalent Metal–Organic Frameworks

Electrostatic Map Reveals Non-Covalent Metal–Organic Frameworks

August 27, 2025

Widespread Metal, Extraordinary Potential Unveiled

August 27, 2025

Electrons Unveil Their Handedness in Attosecond Flashes

August 27, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Thioester-Driven RNA Aminoacylation Enables Peptide Synthesis

Exploring Frailty in Lung Transplantation: A Multidimensional Perspective

Wayne State Researchers Pioneer Advances to Enhance Quality of Life for Individuals with Type 1 Diabetes

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.