• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Developed the most comprehensive database for the study of protein aggregation

Bioengineer by Bioengineer
November 3, 2023
in Biology
Reading Time: 3 mins read
0
Developed the most comprehensive database for the study of protein aggregation
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers at the IBB-UAB have developed the most comprehensive database available to date to help understand the basis of protein aggregation, a phenomenon associated with ageing and several pathologies. The new resource, A3D-MOBD, brings together the proteomes of twelve of the most studied model organisms which cover distant biological clades and contains over half a million predictions of protein regions with a propensity to form aggregates.

Developed the most comprehensive database for the study of protein aggregation

Credit: IBB-UAB

Researchers at the IBB-UAB have developed the most comprehensive database available to date to help understand the basis of protein aggregation, a phenomenon associated with ageing and several pathologies. The new resource, A3D-MOBD, brings together the proteomes of twelve of the most studied model organisms which cover distant biological clades and contains over half a million predictions of protein regions with a propensity to form aggregates.

The A3D-MOBD was developed by the Protein Folding and Computational Diseases Group at the Institut de Biotecnologia i de Biomedicina of the Universitat Autònoma de Barcelona (IBB-UAB), which is directed by Biochemistry and Molecular Biology Professor Salvador Ventura, and in collaboration with scientists from the University of Warsaw, was recently published in the journal Nucleic Acids Research. It provides pre-calculated aggregation propensity analyses and tools for the study of this phenomenon on a proteomic scale, as well as evolutionary comparison between different species.

The new resource builds on the method that the same research group designed in 2015, Aggrescan 3D, but significantly expands the obtainable data. In total, it contains more than 500,000 structural predictions for more than 160,000 proteins from twelve highly characterised model organisms of great interest and widely used biology, biotechnology and biomedicine research. It includes the herbaceous plant Arabidopsis thaliana, the nematode worm Caenorhabditis elegans, zebrafish Danio rerio, the enteric bacterium Escherichia coli, the minimal genome bacteria Mycoplasma genitalium, mouse Mus musculus, the fusion and fission yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, human Homo sapiens, rat Rattus norvegicus, the fruit fly Drosophila melanogaster and the COVID-19 causative virus SARS-CoV-2. The adaptive architecture of A3D-MOBD allows for future additions of other organisms relevant to the medical, biological, agricultural and industrial sectors.

In addition, the tool provides results on protein solubility and stability and includes additional information to contextualise the aggregation process. To develop it, researchers used several computational sources such as the artificial intelligence-based protein structure modelling algorithm AlphaFold or TOPCONS for the prediction of protein interaction with lipid membranes, as well as linking to organism specific gold-reference databases such as the Human Protein Atlas or Wormbase.

Protein aggregation is associated with ageing and is the basis of different pathologies, such as Parkinson’s disease, Alzheimer’s disease and amyotrophic lateral sclerosis (ALS). It is also one of the most important barriers in the industrial production of therapeutic molecules, increasing their final price. With the publication of this database, researchers hope to obtain new clues to understand why some diseases caused by protein aggregation develop in some species, while other organisms are not susceptible to them.

The resource now published by UAB researchers represents the most comprehensive tool available to date for the prediction of aggregation-prone regions. “We anticipate that it will offer solutions to a much wider audience of researchers, not only because of the large collection of structures, but also because of its integration with databases from different biological fields,” says Salvador Ventura. “We are confident that it will set a new standard in protein aggregation research and we expect it to become a basic resource in this field,” concludes the UAB researcher.

A3D-MOBD website: http://biocomp.chem.uw.edu.pl/A3D2/MODB



Journal

Nucleic Acids Research

DOI

10.1093/nar/gkad942

Method of Research

Computational simulation/modeling

Subject of Research

Not applicable

Article Title

A3D Model Organism Database (A3D-MODB): a database for proteome aggregation predictions in model organisms

Article Publication Date

28-Oct-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

NR2E1 Gene Methylation Influences Beef Cattle Adipocytes

NR2E1 Gene Methylation Influences Beef Cattle Adipocytes

October 5, 2025
“Rice Cultivar Transcriptome Reveals Heat Stress Response Genes”

“Rice Cultivar Transcriptome Reveals Heat Stress Response Genes”

October 4, 2025

Revolutionary Graph Network Enhances Protein Interaction Prediction

October 4, 2025

DOG Gene Family in Wheat Drives Seed Dormancy

October 4, 2025

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    94 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    91 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Nurses’ Insights on Implementing Patient-Reported Outcomes

Exploring NK Cell Therapies for Solid Tumors

Acupuncture Use for Low Back Pain in China

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.