• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, December 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Deterministic reversal of single magnetic vortex circulation by an electric field

Bioengineer by Bioengineer
July 6, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ©Science China Press

Vortex is ubiquitous in nature including spiral arms of galaxy, planet rotation, hurricane (tornado). A vortex is a typical and well-known magnetic domain structure in dimensionally confined nanostructures with a symmetry determined by its polarity and circulation. Reversible control of low-dimensional spin structures at nanoscale with low energy consumption is highly desirable for future applications of spintronic devices. Especially, magnetic vortex at nanoscale has been explored for the next-generation data-storage devices.

For the past decades, magnetic field and spin-polarized current have been employed to flip the core and/or reverse circulation of vortex. However, the electric-field deterministic control of a magnetic vortex, which offers much higher storage density and much lower power consumption, is challenging due to the absence of planar magnetic anisotropy of the spin structure.

Chinese researchers discover a deterministic reversal of magnetic vortex circulation in a Ni79Fe21 (NiFe) island on top of a layered-perovskite Bi2WO6 (BWO) thin film using an electric field. The space-varying strain from BWO film under a bi-axial planar electric field drives the magnetic vortex circulation reversal in this magnetoelectric device. Phase-field simulation directly reveals the mesoscale dynamic reversal mechanism: the traveling strain drags the vortex core from its center to the edge of the NiFe island, then a new core emerges with opposing vortex circulation, leading to the vortex circulation reversal.

This study provides a new framework to deterministically manipulate nanoscale chiral spin texture (vortex, skyrmions etc.) with ultralow-energy consumption. Especially in physical mechanism research, it revealed new magnetoelectric coupling mechanism for more efforts to realize the electric-field control of order parameters (charge, spin and orbital) in functional thin film devices in future.

###

The work in Beijing Normal University is supported by the National Key Research and Development Program of China (2016YFA0302300), the National Natural Science Foundation of China (11974052, 51972028) and the support from CAS Interdisciplinary Innovation Team. R.R. is funded by the Director, Office of Science, Office of Basic Energy Sciences, Materials Science and Engineering Department of the US Department of Energy (DOE) in the Quantum Materials Program (KC2202) (DE-AC02-05CH11231). J.L. acknowledges the support by the Science Alliance Joint Directed Research & Development Program and the Transdisciplinary Academy Program at the University of Tennessee. Use of the Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US DOE (DE-AC02-05CH11231).

See the article:

Yuelin Zhang, Chuanshou Wang, Houbing Huang, Jingdi Lu, Renrong Liang, Jian Liu, Renci Peng, Qintong Zhang, Qinghua Zhang, Jing Wang, Lin Gu, Xiu-Feng Han, Long-Qing Chen, Ramamoorthy Ramesh, Ce-Wen Nan, Jinxing Zhang. Deterministic reversal of single magnetic vortex circulation by an electric field. Science Bulletin, 2020, 65(15): 1264-1271

https://doi.org/10.1016/j.scib.2020.04.008

Media Contact
Yan Bei
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.scib.2020.04.008

Tags: Chemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Cutting Electrolyte Reduction Boosts High-Energy Battery Performance

Cutting Electrolyte Reduction Boosts High-Energy Battery Performance

December 19, 2025
Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

December 11, 2025

Photoswitchable Olefins Enable Controlled Polymerization

December 11, 2025

Cation Hydration Entropy Controls Chloride Ion Diffusion

December 10, 2025
Please login to join discussion

POPULAR NEWS

  • Robotic Waist Tether for Research Into Metabolic Cost of Walking

    NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13
  • Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • SARS-CoV-2 Subvariants Affect Outcomes in Elderly Hip Fractures

    44 shares
    Share 18 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Economic Strategies for Maternal-Neonatal Sepsis Solutions

Silica Nanoparticles Mitigate Chromium Stress in Marigolds

Mitochondrial Dynamics: Key to Inflammatory Disease Treatment

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.