• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Determining the quantity and location of lipids in the brain

Bioengineer by Bioengineer
May 19, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Photo by Della Perrone for the Beckman Institute for Advanced Science and Technology.

Researchers at the Beckman Institute at the University of Illinois at Urbana-Champaign have developed a new technique that can determine the specific molecular form, location, and the amount of lipids in samples of rat brain tissue. The technique provides more information than previous methods.

The paper “Quantitative Imprint Mass Spectrometry Imaging of Endogenous Ceramides in Rat Brain Tissue with Kinetic Calibration” was published in Analytical Chemistry.

“The brain is like a bar of butter. The most common molecules are water and lipids,” said Jonathan Sweedler, James R. Eiszner Family Endowed Chair in Chemistry and the director of the School of Chemical Sciences. “Unfortunately, we don’t fully understand the chemical complexity of lipids in the brain, which makes it hard to know their functions and how they are affected by different diseases.”

Previous research in the field determined the lipid composition in a brain region, but not the localization or amount. The Sweedler Research Group refined a new technique called mass spectroscopy imaging that measures all three. “The technique allows us to look at a slice of a rat brain and figure out the locations of specific and unusual lipids,” Sweedler said.

Members of the Sweedler Research Group imprinted the tissues onto slides containing chemicals that could diffuse into the tissues and vice versa. “It’s like taking a piece of paper with ink and putting silly putty on it and seeing the image on the silly putty,” Sweedler said. Using this technique, the researchers were able to determine the distribution and amount of ceramides, which are important in learning and memory, in the tissue samples.

However, there are disadvantages to the technique. “Although it works well for certain categories of lipids, we haven’t shown that it works for the molecules found in the brain,” Sweedler said. “Additionally, it requires more steps because you have to prepare the brain sample and the surfaces that have the chemical coating.”

The researchers hope that this technique will help them look at how the lipid composition changes in response to pain medicines and drugs of abuse. This may help in the search for alternatives to existing treatments for chronic pain.

###

The study was funded by the National Institute on Drug Abuse.

Editor’s Note:

The paper “Quantitative Imprint Mass Spectrometry Imaging of Endogenous Ceramides in Rat Brain Tissue with Kinetic Calibration” can be found at https://doi.org/10.1021/acs.analchem.0c00392

Media Contact
Doris Dahl
[email protected]

Original Source

https://beckman.illinois.edu/about/news/article/2020/05/19/determining-the-quantity-and-location-of-lipids-in-the-brain

Related Journal Article

http://dx.doi.org/10.1021/acs.analchem.0c00392

Tags: AddictionCell BiologyChemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Innovative Barkhausen Noise Measurement System Paves the Way for More Efficient Power Electronics

Innovative Barkhausen Noise Measurement System Paves the Way for More Efficient Power Electronics

September 5, 2025
Scientists Cultivate Pencil-Shaped Gold “Quantum Needles” in Breakthrough Discovery

Scientists Cultivate Pencil-Shaped Gold “Quantum Needles” in Breakthrough Discovery

September 5, 2025

Microwave-Assisted Synthesis of Biomass-Derived N-Doped Carbon Dots Advances Metal Ion Sensing Technology

September 5, 2025

Discovery of Protostellar Jets in Milky Way’s Outer Regions Unveils Universal Star Formation Processes

September 5, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Semaglutide Decreases Cocaine Consumption in Rats, Study Finds

Single-Cell Study Reveals Salmonella Effector Cooperation

Struvite’s Potential in Soilless Crop Systems

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.