• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Determinations of air flow behaviors in the human upper airway by visualizing flowing air directly

Bioengineer by Bioengineer
October 1, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: ©Science China Press

The determination of airflow characteristics in the human upper airway is crucial in investigating obstructive sleep apnea, particle sedimentation, drug delivery, and many biomedical problems. Currently?computational simulations have been used more and more in the upper airway related studies. A precondition to choose a correct flow model to obtain credible predictions in numerical simulations is to know the airflow characteristics in the upper airway. However, direct visualization of air flow patterns in in-vitro models with complex geometrical structures is a big challenge.

Professor Yaqi Huang's team in the Capital Medical University in Beijing, China, has developed a unique method and performed the first direct visualization of air flow in the in-vitro models built based on realistic anatomical structures of the upper airway. The paper entitled "Direct visualizations of air flow in the human upper airway using in-vitro models" was published in SCIENCE CHINA Life sciences recently.

The investigators constructed unique half-side transparent physical models of the upper airway for normal subjects (Figure 1). Using smoke-wire to trace the airflow on the green laser sheet background in the physical models, they captured the streamlines in the mid-sagittal plane of the pharyngeal airway using a high-speed camera. The results revealed that the airflow through the pharynx in both the mean-structure (Figure 1a) and the individual structure (Figure 1b) models was a laminar flow with vortexes but not a turbulent flow under normal inspiration. The flow field predicted numerically using the laminar model was consistent with the observations in the physical models.

From a comparison of the velocity fields predicted numerically using the half-side model (column 2 in Figure 2) and complete model (column 3 in Figure 2), one can fine that the speed range and flow patterns in both models are quite similar except for the slow flow in the boundary layer region of the flat wall in the half-side model. This confirms that it is reasonable to investigate the flow behaviors in the upper airway using the half-side model. The effects of the upper airway narrowing on pharyngeal resistance are also simulated and analyzed using numerical models in this study.

###

This research was funded by from the National Nature Science Foundation of China (Nos 31670959?81171422), the National Science and Technology Pillar Program of China (No, 2012BAI05B03), the Key Projects in Science and Technology Program of Beijing Municipal Education Commission, China (No. KZ201210025022), Beijing Postdoctoral Research Foundation (No. 2016ZZ-45), and Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application.

See the article:

Wu, H., Wang, M., Wang, J., An, Y., Wang, H., and Huang, Y. (2018). Direct visualizations of air flow in the human upper airway using in-vitro models. Sci China Life Sci 61, https://doi.org/10.1007/s11427-018-9373-y

http://engine.scichina.com/publisher/scp/journal/SCLS/doi/10.1007/s11427-018-9373-y?slug=full%20text

https://link.springer.com/article/10.1007%2Fs11427-018-9373-y

Media Contact

Yaqi Huang
[email protected]

http://www.scichina.com/

Related Journal Article

http://dx.doi.org/10.1007/s11427-018-9373-y

Share12Tweet7Share2ShareShareShare1

Related Posts

Standardized Extract Boosts Immunity in Chemotherapy Mice

September 20, 2025
Enhancing Labeo rohita Growth with Trypsin Nanoparticles

Enhancing Labeo rohita Growth with Trypsin Nanoparticles

September 20, 2025

Comparing ZISO-Driven Carotenoid Production in Dunaliella Species

September 19, 2025

When Metabolism Powers More Than Just Fuel: Exploring Its Expanded Role

September 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

NICU Families’ Stories Through Staff Perspectives

CT Scans in Kids: Cancer Risk Insights

Revealing Tendon Changes from Rotator Cuff Tears

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.