• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Depleting microbiome with antibiotics can affect glucose metabolism

Bioengineer by Bioengineer
July 23, 2018
in Health
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Salk Institute

LA JOLLA–(July 23, 2018) A new study from the Salk Institute has found that mice that have their microbiomes depleted with antibiotics have decreased levels of glucose in their blood and better insulin sensitivity. The research has implications for understanding the role of the microbiome in diabetes. It also could lead to better insight into the side effects seen in people who are being treated with high levels of antibiotics. The study appeared in the journal Nature Communications on July 20, 2018.

"This research is very exciting, because the situation we've created in these mice is very similar to what humans go through when they're treated with multiple antibiotics," says Satchidananda Panda, a professor in Salk's Regulatory Biology Laboratory and the paper's senior author. "Now that we know about these effects on glucose metabolism, we can look for components of the microbiome that influence them."

The microbiome is the collection of microorganisms that live in an animal's body, many of which are essential for health. Previous studies have shown that mice whose microbiomes are deficient in certain types of bacteria are more likely to develop diabetes. There is also some evidence that certain microbes may be protective against diabetes.

"Many scientists doing microbiome experiments with mice use antibiotics to clear out bacteria before their intervention," says Amir Zarrinpar, an assistant professor at UC San Diego and the paper's first author. "We show that such clearing out has a tremendous effect on the metabolism of the mouse. So some metabolic effects can be attributed to this depletion rather than the intervention."

The researchers didn't set out to look specifically at how antibiotic-induced depletion influences glucose levels. They wanted to look at the circadian (24 hour) rhythms of mouse metabolism when the microbiome is depleted. This type of research is often done with mice raised in germ-free environments.

"Because we didn't have access to these germ-free mice, we decided to instead deplete the microbiome using common antibiotics from the clinic," Panda says. The investigators used a cocktail of four different antibiotics in the mice to do so. "This weakness–not having the right kind of mice–became a strength that enabled us to make this unexpected discovery," Panda says.

After treating the mice, the investigators observed that there was a large decrease in the diversity of microorganisms present in their guts, as expected. When they looked at the metabolisms of the mice, they found that they were able to clear glucose from their blood much faster than expected.

Further studies showed that the colon tissue in the mice was acting as a kind of sink for the glucose–absorbing the extra sugar and thereby reducing its levels in the blood. This behavior fit the observation that the mice had colons that were greatly increased in size.

The researchers then discovered that these metabolic changes were actually related to changes in liver function and to the bile acids that were being released by the liver. The mice did not have changes in body fat composition or in what they ate–the two things that normally influence glucose metabolism and are known to play a role in type 2 diabetes in humans.

"We're not suggesting that type 2 diabetes be treated with antibiotics," Panda explains.

Zarrinpar adds, "It's just interesting to see that there is a way the microbiome can be manipulated to make the gut produce high levels of hormones that make the body more sensitive to insulin."

The next steps are to look at how the changes in the liver are occurring and which component of the microbiome is influencing the changes. "Perhaps we could find ways to support the growth of certain gut microbes and induce these changes in glucose regulation in humans," Panda concludes. "We are now one step closer to translating this research."

###

The paper's other authors were Amandine Chaix and Alan Saghatelian of Salk and Zhenjiang Z. Xu, Max W. Chang, Clarisse A. Marotz and Rob Knight of UC San Diego.

This work was funded by the National Institutes of Health, an American Association for the Study of Liver Diseases Liver Scholar Award, an American Heart Association Beginning Grant-in-Aid, an American Gastroenterological Association Microbiome Junior Investigator Research Award, an American Diabetes Association Mentor-Based Postdoctoral Fellowship, the Leona M. and Harry B. Helmsley Charitable Trust, and the Glenn Foundation.

About the Salk Institute for Biological Studies:

Every cure has a starting point. The Salk Institute embodies Jonas Salk's mission to dare to make dreams into reality. Its internationally renowned and award-winning scientists explore the very foundations of life, seeking new understandings in neuroscience, genetics, immunology, plant biology and more. The Institute is an independent nonprofit organization and architectural landmark: small by choice, intimate by nature and fearless in the face of any challenge. Be it cancer or Alzheimer's, aging or diabetes, Salk is where cures begin. Learn more at: salk.edu.

Media Contact

Salk Communications
[email protected]
858-453-4100
@salkinstitute

http://www.salk.edu

Original Source

https://www.salk.edu/news-release/depleting-microbiome-with-antibiotics-can-affect-glucose-metabolism/

Share12Tweet7Share2ShareShareShare1

Related Posts

Unraveling Copper’s Redox Role in Ullmann Reactions

September 22, 2025

Koala Stress Levels Connected to Increased Disease Risk

September 22, 2025

Tracking Perinatal Anxiety and Depression: Insights from a Major Urban Medical Center

September 22, 2025

Inflammation Linked to Life-Threatening Lung Malformations in Infants

September 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unraveling Copper’s Redox Role in Ullmann Reactions

Koala Stress Levels Connected to Increased Disease Risk

Metabolic Markers Identified as Potential Predictors of Breast Cancer Risk in High-Risk Women

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.