• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Department of Energy recognizes two decades’ worth of Argonne’s high-quality thermochemical data

Bioengineer by Bioengineer
March 20, 2023
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The Active Thermochemical Tables join other highly regarded data resources in DOE’s Public Reusable Research Data.

ATcT-image-1-16x9 (002)

Credit: (Image by Argonne National Laboratory.)

The Active Thermochemical Tables join other highly regarded data resources in DOE’s Public Reusable Research Data.

Over two decades ago chemist Branko Ruscic dreamt of a ​“superspreadsheet,” a giant database of thermochemical data that would be open to any interested scientist or engineer. Such data quantify the changes in energy and heat that occur during chemical reactions. They are essential, for example, in finding better ways to produce clean energy and for improving our understanding of climate change.

Ruscic is an Argonne Distinguished Fellow at the U.S. Department of Energy’s (DOE) Argonne National Laboratory. His dream is now very much a reality. His superspreadsheet, the Active Thermochemical Tables (ATcT), incorporates the results of collaborations with other Argonne scientists, as well as colleagues from academic institutions across the United States and around the world.

“The end result of ATcT is thermochemistry based on optimal use of all the available knowledge. This approach could make conventional tabulations of thermochemical values obsolete.” — Branko Ruscic, Argonne Distinguished Fellow

In March of this year, the DOE Office of Science announced it has designated ATcT as DOE Public Reusable Research (PuRe) Data. The ATcT platform thus joins other stellar DOE data resources. These resources include databases on materials for energy storage and other applications, ground-based atmospheric measurements, genome sequences, particle physics and more. As a result, scientists are able to more easily analyze, compare against and build upon this data, accelerating the pace of discovery in many different fields.

“The availability of high-quality thermochemical values is critical in many areas of chemistry, including industrial processes,” said assistant chemist David Bross, who also contributed to the ATcT development. These values are used in developing realistic predictive models of complex chemical environments, such as combustion or the atmosphere. They are also employed in developing or improving sophisticated computational models of atomic structures involved in chemical reactions.

“The ATcT website presently attracts a quarter of a million unique visitors each year,” Ruscic said. ​“The most recent publicly available version provides thermochemical values for nearly 2,800 chemical species, and we are intensely working to expand it beyond 3,000 species.”

These thermochemical values are derived from all available experimental measurements as well as state-of-the art theoretical data. The ATcT approach exposes the maze of inherent interdependencies normally ignored by the conventional treatment. It allows a statistical analysis of the individual measurements that define a thermochemical network.

“Over a decade ago, we embedded our thermochemical network approach into software consisting of more than 50,000 lines of computer code,” Ruscic said. ​“The current version reflects more than 30,000 thermochemical determinations linked in our thermochemical network.”

The first thermochemical network used by the ATcT software addressed a chemically important subject. There was a need for a more precise value for the energy required for the breakdown of the bonds in water. This then led to a more precise value for the heat of formation of the hydroxy radical, a key chemical species in the atmosphere combining hydrogen and oxygen. Both of these values improved upon the existing data by a sufficient amount to change then current understanding of the chemical reactions involved in predictive modeling of the atmosphere.

“The end result of ATcT is thermochemistry based on optimal use of all the available knowledge,” Ruscic said. ​“This approach could make conventional tabulations of thermochemical values obsolete.”

This work was supported by the DOE Office of Basic Energy Sciences.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.

The U.S. Department of Energy’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://​ener​gy​.gov/​s​c​ience.



Share12Tweet8Share2ShareShareShare2

Related Posts

Breakthrough Self-Assembling Material Paves the Way for Fully Recyclable EV Batteries

Breakthrough Self-Assembling Material Paves the Way for Fully Recyclable EV Batteries

August 28, 2025
Wayne State Study Advances Quality of Life for Individuals with Type 1 Diabetes

Wayne State Study Advances Quality of Life for Individuals with Type 1 Diabetes

August 27, 2025

Wayne State Researchers Pioneer Advances to Enhance Quality of Life for Individuals with Type 1 Diabetes

August 27, 2025

Electrostatic Map Reveals Non-Covalent Metal–Organic Frameworks

August 27, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Rewrite Towards sustainable diets and farming systems through land use optimisation as a headline for a science magazine post, using no more than 8 words

Rewrite Nuclear PKM2: a signal receiver, a gene programmer, and a metabolic modulator as a headline for a science magazine post, using no more than 8 words

Rewrite Association between polygenic risk and survival in breast cancer patients as a headline for a science magazine post, using no more than 7 words

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.