• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Defining the centromere

Bioengineer by Bioengineer
October 21, 2019
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Investigating the roles of kinetochores in cell division

IMAGE

Credit: Images: Dr. Veit Schubert, IPK, Gatersleben
Photos: Josef Bergstein, IPK, Gatersleben


The division of cells is highly-regulated and complex process which requires the organised collaboration of a multitude of different cellular components. Although the basic principles are known, many components and their workings are still unidentified. Scientists from the project group “Kinetochore Biology” at the IPK in Gatersleben are shedding light on the diverse landscape of kinetochores. Kinetochores are required for the interaction with the spindle apparatus and segregation of the chromosomes. Within an international collaboration, the scientists recently uncovered a chaperone protein which affects loading of CenH3 to centromeres – a crucial step for the assembly of the kinetochores. Knowledge about the regulation of centromeres will help develop methods to speed-up the breeding process of crop plants.

During somatic cell division, chromosomes are split into sister chromatids thanks to the pulling forces of the spindles apparatus. In order for this to happen correctly, the fibres of the spindle apparatus need to link to the chromosomes at the correct position. Here kinetochores come into play. Kinetochores are assembled at the correct chromosomal positions, marked by so-called centromeres. From there, they attach to the spindle apparatus and aid the segregation of the chromosomes during mitosis as well as meiosis. However, the entire segregation process comes to a halt if the function of the centromere is impaired. Led by Dr Inna Lermontova, researchers from the Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) in Gatersleben in collaboration with other institutes have uncovered a chaperone which can affect the formation of the crucial centromere component CenH3.

The incorporation of the histone variant CenH3 in the chromatin determines the positioning of the centromeres. By binding to CenH3, the protein NASPSIM3 takes on the role of a chaperone, escorting CenH3 within the cell and assuring the correct deposition of this histone. The scientists showed that the reduced expression of NASPSIM3 negatively affects CenH3 deposition, therefore reducing centromere formation, and in turn kinetochore assembly.

The researchers from the project group “Kinetochore Biology” will continue to investigate the pathways effecting kinetochores. Dr Lermontova let us know: “There are more than 100 different kinetochore proteins and only few of them have been described and characterised functionally in plants. In the group, we are focussing on elucidating the mechanism of kinetochore assembly and function.”

Moreover, research on the kinetochore has extensive potential in applied science. For instance, in the development of haploid inducer lines for plant breeding. Dr Lermontova: “Haploid induction is very important for plant breeding. When for example cereal plant breeders would like to fix a trait, it normally takes seven to eight generations, meaning seven to eight years to generate pure homozygous lines to stabilize the improved trait. By generating haploid lines, you can fix this within a single generation, thus increasing the efficiency.”

At the IPK Dr Lermontova has demonstrated that the mutant for kinetochore protein KNL2 of Arabidopsis induces haploids in crosses with wild type and that the haploid induction efficiency can be increased after exposure of haploid inducer line to stress conditions (I. Lermontova, WO 2017/067714). Compared to already existing in situ haploid induction approaches the KNL2-based approach has a number of positive features: It showcases a comparatively high haploid induction efficiency and viable homozygous mutants with only slightly reduced fitness can be generated as haploid inducers. Further, the KNL2-based haploid induction approach is completely established and patented at the IPK.

Dr Lermontova: “The next step is now to transfer this to crop species. For this reason, we are currently in discussion with plant breeding companies. However, thoroughly understanding of the mechanisms first is important. One cannot improve crop species if it is not understood what the underlying mechanisms are.”

###

Media Contact
Dr Inna Lermontova
[email protected]
49-394-825-570

Related Journal Article

http://dx.doi.org/10.1111/tpj.14518

Tags: AgricultureBiologyCell BiologyEvolutionFood/Food ScienceGenesGeneticsPlant Sciences
Share13Tweet8Share2ShareShareShare2

Related Posts

Scientists Secure $3.7 Million Grant to Explore the Link Between Perimenopause and Psychosis

Scientists Secure $3.7 Million Grant to Explore the Link Between Perimenopause and Psychosis

October 6, 2025
Streamlined Batch Processing of Biomedical Regression Models in R Made Easy

Streamlined Batch Processing of Biomedical Regression Models in R Made Easy

October 6, 2025

Revolutionizing Multi-Sample Single-Cell RNA-seq Detection

October 6, 2025

Revolutionizing Alkaloid Structural Analysis with an Innovative Metal–Organic Framework

October 6, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    95 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    93 shares
    Share 37 Tweet 23
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    73 shares
    Share 29 Tweet 18
  • New Insights Suggest ALS May Be an Autoimmune Disease

    71 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Hydrocortisone Reduces Cytokines, Harms Juvenile Mouse Testes

Transformer Model Predicts Cervical Cancer Prognosis

IL-21-Driven Ly6C+Ly6G+ CD4+ T Cells Boost Lung Immunity

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.