• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Defect-rich MnOx nanobelts prepared for glutathione detection in recent study

Bioengineer by Bioengineer
April 25, 2023
in Chemistry
Reading Time: 2 mins read
0
Defect-rich MnOx Nanobelts Prepared for Glutathione Detection in Recent Study
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A recent study published in Sensors and Actuators: B. Chemical highlights the development of highly active oxidase mimics using MnOx nanobelts (NBs) generated through laser irradiation in liquid (LIL) techniques by researchers from Institute of Solid State Physics, Hefei Institute of Physical Sciences, Chinese Academy of Sciences.

Defect-rich MnOx Nanobelts Prepared for Glutathione Detection in Recent Study

Credit: JI Shihan

A recent study published in Sensors and Actuators: B. Chemical highlights the development of highly active oxidase mimics using MnOx nanobelts (NBs) generated through laser irradiation in liquid (LIL) techniques by researchers from Institute of Solid State Physics, Hefei Institute of Physical Sciences, Chinese Academy of Sciences.

Although nanozymes with oxidase mimic activity have shown promise for biomarker sensing, their lower activity compared to natural enzymes has constrained their wider application.

In this research, the team identified that MnOx NBs with an ultrathin layered structure improve catalytic active site exposure and the negative charge layer of birnessite-type MnOx NBs enhances affinity for positive substrates such as 3,3′,5,5′-tetramethylbenzidine (TMB).

Significantly, oxygen vacancies created via laser irradiation reduced the adsorption energy of the MnOx NBs for oxygen, resulting in excellent substrate affinity (Km = 0.0087 mM) and high catalytic rate (Vmax = 6.04 × 10-7 M/s).

Furthermore, glutathione (GSH) inhibition of Nanozymes with oxidase (OXD) mimics was exploited in the establishment of a fast and highly sensitive method for GSH determination.

These findings may provide new strategies for synthesizing highly active nanozymes for biomarker applications.



Journal

Sensors and Actuators B Chemical

Article Title

Laser-generated defect-rich MnOx nanobelts with high oxidase mimic activity for glutathione detection

Article Publication Date

1-Mar-2023

Share12Tweet7Share2ShareShareShare1

Related Posts

Organic Cofactor Enables Energy-Transfer Photoproximity Labeling

Organic Cofactor Enables Energy-Transfer Photoproximity Labeling

September 18, 2025
UVA Secures $16M DOE Grant to Establish Cutting-Edge Predictive Science Simulation Center

UVA Secures $16M DOE Grant to Establish Cutting-Edge Predictive Science Simulation Center

September 17, 2025

A Motor-Sparing Local Anesthetic: Is It Within Reach?

September 17, 2025

Protein Chemist Secures NIH Grant to Explore Mechanisms of Inflammation

September 17, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Analog Speech Recognition via Physical Computing

Organic Cofactor Enables Energy-Transfer Photoproximity Labeling

Forensic Imaging Uncovers Torture in Asylum Seekers

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.